Cargando…
Hyperbolic geometry of the olfactory space
In the natural environment, the sense of smell, or olfaction, serves to detect toxins and judge nutritional content by taking advantage of the associations between compounds as they are created in biochemical reactions. This suggests that the nervous system can classify odors based on statistics of...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6114987/ https://www.ncbi.nlm.nih.gov/pubmed/30167457 http://dx.doi.org/10.1126/sciadv.aaq1458 |
_version_ | 1783351301490343936 |
---|---|
author | Zhou, Yuansheng Smith, Brian H. Sharpee, Tatyana O. |
author_facet | Zhou, Yuansheng Smith, Brian H. Sharpee, Tatyana O. |
author_sort | Zhou, Yuansheng |
collection | PubMed |
description | In the natural environment, the sense of smell, or olfaction, serves to detect toxins and judge nutritional content by taking advantage of the associations between compounds as they are created in biochemical reactions. This suggests that the nervous system can classify odors based on statistics of their co-occurrence within natural mixtures rather than from the chemical structures of the ligands themselves. We show that this statistical perspective makes it possible to map odors to points in a hyperbolic space. Hyperbolic coordinates have a long but often underappreciated history of relevance to biology. For example, these coordinates approximate the distance between species computed along dendrograms and, more generally, between points within hierarchical tree–like networks. We find that both natural odors and human perceptual descriptions of smells can be described using a three-dimensional hyperbolic space. This match in geometries can avoid distortions that would otherwise arise when mapping odors to perception. |
format | Online Article Text |
id | pubmed-6114987 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-61149872018-08-30 Hyperbolic geometry of the olfactory space Zhou, Yuansheng Smith, Brian H. Sharpee, Tatyana O. Sci Adv Research Articles In the natural environment, the sense of smell, or olfaction, serves to detect toxins and judge nutritional content by taking advantage of the associations between compounds as they are created in biochemical reactions. This suggests that the nervous system can classify odors based on statistics of their co-occurrence within natural mixtures rather than from the chemical structures of the ligands themselves. We show that this statistical perspective makes it possible to map odors to points in a hyperbolic space. Hyperbolic coordinates have a long but often underappreciated history of relevance to biology. For example, these coordinates approximate the distance between species computed along dendrograms and, more generally, between points within hierarchical tree–like networks. We find that both natural odors and human perceptual descriptions of smells can be described using a three-dimensional hyperbolic space. This match in geometries can avoid distortions that would otherwise arise when mapping odors to perception. American Association for the Advancement of Science 2018-08-29 /pmc/articles/PMC6114987/ /pubmed/30167457 http://dx.doi.org/10.1126/sciadv.aaq1458 Text en Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Zhou, Yuansheng Smith, Brian H. Sharpee, Tatyana O. Hyperbolic geometry of the olfactory space |
title | Hyperbolic geometry of the olfactory space |
title_full | Hyperbolic geometry of the olfactory space |
title_fullStr | Hyperbolic geometry of the olfactory space |
title_full_unstemmed | Hyperbolic geometry of the olfactory space |
title_short | Hyperbolic geometry of the olfactory space |
title_sort | hyperbolic geometry of the olfactory space |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6114987/ https://www.ncbi.nlm.nih.gov/pubmed/30167457 http://dx.doi.org/10.1126/sciadv.aaq1458 |
work_keys_str_mv | AT zhouyuansheng hyperbolicgeometryoftheolfactoryspace AT smithbrianh hyperbolicgeometryoftheolfactoryspace AT sharpeetatyanao hyperbolicgeometryoftheolfactoryspace |