Cargando…

A Novel Non-contact Heart Rate Monitor Using Impulse-Radio Ultra-Wideband (IR-UWB) Radar Technology

We discovered that impulse-radio ultra-wideband (IR-UWB) radar could recognize cardiac motions in a non-contact fashion. Therefore, we measured the heart rate (HR) and rhythms using an IR-UWB radar sensor and evaluated the validity and reliability of the measurements in comparison to electrocardiogr...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Yonggu, Park, Jun-Young, Choi, Yeon-Woo, Park, Hyun-Kyung, Cho, Seok-Hyun, Cho, Sung Ho, Lim, Young-Hyo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115337/
https://www.ncbi.nlm.nih.gov/pubmed/30158545
http://dx.doi.org/10.1038/s41598-018-31411-8
Descripción
Sumario:We discovered that impulse-radio ultra-wideband (IR-UWB) radar could recognize cardiac motions in a non-contact fashion. Therefore, we measured the heart rate (HR) and rhythms using an IR-UWB radar sensor and evaluated the validity and reliability of the measurements in comparison to electrocardiography. The heart beats were measured in 6 healthy volunteers (18 samples) with normal sinus rhythm (NSR) and 16 patients (36 samples) with atrial fibrillation (AF) using both an IR-UWB radar sensor and electrocardiography simultaneously. The participants hold their breath for 20 seconds during the data acquisition. In subjects with NSR, there was excellent agreement of HR (intraclass correlation coefficient [ICC] 0.856), average R-R interval (ICC 0.997) and individual R-R intervals between the two methods (ICC 0.803). In subjects with AF, HR (ICC 0.871) and average R-R interval (ICC 0.925) from the radar sensor also agreed well with those from electrocardiography, though there was a small disagreement in the individual R-R intervals between the two methods (ICC 0.697). The rhythms computed by the signal-processing algorithm showed good agreement between the two methods (Cohen’s Kappa 0.922). The IR-UWB radar sensor is precise and accurate for assessing HR and rhythms in a non-contact fashion.