Cargando…

Human menstrual blood-derived stem cells promote functional recovery in a rat spinal cord hemisection model

Spinal cord injury (SCI) is associated with a dismal prognosis including severe voluntary motor and sensory deficits in the presence of the current therapies, thus new and efficient treatment strategies are desperately required. Along with several advantages, such as easy accessibility, high-yield,...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Qinfeng, Wang, Qinghua, Li, Zhangjie, Li, Xiangzhe, Zang, Jing, Wang, Zhangwei, Xu, Chen, Gong, Yujia, Cheng, Jiaqi, Li, Haoming, Shen, Guangyu, Dong, Chuanming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115341/
https://www.ncbi.nlm.nih.gov/pubmed/30158539
http://dx.doi.org/10.1038/s41419-018-0847-8
Descripción
Sumario:Spinal cord injury (SCI) is associated with a dismal prognosis including severe voluntary motor and sensory deficits in the presence of the current therapies, thus new and efficient treatment strategies are desperately required. Along with several advantages, such as easy accessibility, high-yield, potential of enormous proliferation, menstrual blood-derived mesenchymal stem cells (MenSCs) have been proposed as a promising strategy in regeneration medicine. In this study, the MenSCs were transplanted into incomplete thoracic (T10) spinal cord injury (SCI) rats, all rats were sacrificed at 7, 14, and 28 days after surgery. Based on the results, we found that MenSCs transplantation improved the hind limb motor function. Besides, H&E staining showed that MenSCs treatment markedly reduced cavity formation in the lesion site. Furthermore, treatment by MenSCs showed more MAP2-positive mature neurons, as well as axonal regeneration manifested by NF-200 and less expression of chondroitin sulfate proteoglycans (CSPGs) than the non-treatment in the lesion site. Additionally, immunofluorescence, Western blot, and qRT-PCR methods showed that levels of brain-derived neurotrophic factor (BDNF) were significantly higher in the injured spinal cord after implantation of MenSCs. Results of qRT-PCR indicated that inflammatory factors, including TNF-α and IL-1β were inhibited after MenSCs transplantation. The improved motor function of hind limb and the increased cell body area of motor neurons were suppressed by blocking of the BDNF-TrkB signaling. It was eventually revealed that MenSCs implantation had beneficial therapeutic effects on the rehabilitation of the rat spinal cord hemisection model, mainly by enhancing the expression of BDNF. MenSCs transplantation may provide a novel therapeutic strategy for patients with SCI in the future.