Cargando…

An imputation platform to enhance integration of rice genetic resources

As sequencing and genotyping technologies evolve, crop genetics researchers accumulate increasing numbers of genomic data sets from various genotyping platforms on different germplasm panels. Imputation is an effective approach to increase marker density of existing data sets toward the goal of inte...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Diane R., Agosto-Pérez, Francisco J., Chebotarov, Dmytro, Shi, Yuxin, Marchini, Jonathan, Fitzgerald, Melissa, McNally, Kenneth L., Alexandrov, Nickolai, McCouch, Susan R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115364/
https://www.ncbi.nlm.nih.gov/pubmed/30158584
http://dx.doi.org/10.1038/s41467-018-05538-1
_version_ 1783351366683459584
author Wang, Diane R.
Agosto-Pérez, Francisco J.
Chebotarov, Dmytro
Shi, Yuxin
Marchini, Jonathan
Fitzgerald, Melissa
McNally, Kenneth L.
Alexandrov, Nickolai
McCouch, Susan R.
author_facet Wang, Diane R.
Agosto-Pérez, Francisco J.
Chebotarov, Dmytro
Shi, Yuxin
Marchini, Jonathan
Fitzgerald, Melissa
McNally, Kenneth L.
Alexandrov, Nickolai
McCouch, Susan R.
author_sort Wang, Diane R.
collection PubMed
description As sequencing and genotyping technologies evolve, crop genetics researchers accumulate increasing numbers of genomic data sets from various genotyping platforms on different germplasm panels. Imputation is an effective approach to increase marker density of existing data sets toward the goal of integrating resources for downstream applications. While a number of imputation software packages are available, the limitations to utilization for the rice community include high computational demand and lack of a reference panel. To address these challenges, we develop the Rice Imputation Server, a publicly available web application leveraging genetic information from a globally diverse rice reference panel assembled here. This resource allows researchers to benefit from increased marker density without needing to perform imputation on their own machines. We demonstrate improvements that imputed data provide to rice genome-wide association (GWA) results of grain amylose content and show that the major functional nucleotide polymorphism is tagged only in the imputed data set.
format Online
Article
Text
id pubmed-6115364
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-61153642018-08-31 An imputation platform to enhance integration of rice genetic resources Wang, Diane R. Agosto-Pérez, Francisco J. Chebotarov, Dmytro Shi, Yuxin Marchini, Jonathan Fitzgerald, Melissa McNally, Kenneth L. Alexandrov, Nickolai McCouch, Susan R. Nat Commun Article As sequencing and genotyping technologies evolve, crop genetics researchers accumulate increasing numbers of genomic data sets from various genotyping platforms on different germplasm panels. Imputation is an effective approach to increase marker density of existing data sets toward the goal of integrating resources for downstream applications. While a number of imputation software packages are available, the limitations to utilization for the rice community include high computational demand and lack of a reference panel. To address these challenges, we develop the Rice Imputation Server, a publicly available web application leveraging genetic information from a globally diverse rice reference panel assembled here. This resource allows researchers to benefit from increased marker density without needing to perform imputation on their own machines. We demonstrate improvements that imputed data provide to rice genome-wide association (GWA) results of grain amylose content and show that the major functional nucleotide polymorphism is tagged only in the imputed data set. Nature Publishing Group UK 2018-08-29 /pmc/articles/PMC6115364/ /pubmed/30158584 http://dx.doi.org/10.1038/s41467-018-05538-1 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Wang, Diane R.
Agosto-Pérez, Francisco J.
Chebotarov, Dmytro
Shi, Yuxin
Marchini, Jonathan
Fitzgerald, Melissa
McNally, Kenneth L.
Alexandrov, Nickolai
McCouch, Susan R.
An imputation platform to enhance integration of rice genetic resources
title An imputation platform to enhance integration of rice genetic resources
title_full An imputation platform to enhance integration of rice genetic resources
title_fullStr An imputation platform to enhance integration of rice genetic resources
title_full_unstemmed An imputation platform to enhance integration of rice genetic resources
title_short An imputation platform to enhance integration of rice genetic resources
title_sort imputation platform to enhance integration of rice genetic resources
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115364/
https://www.ncbi.nlm.nih.gov/pubmed/30158584
http://dx.doi.org/10.1038/s41467-018-05538-1
work_keys_str_mv AT wangdianer animputationplatformtoenhanceintegrationofricegeneticresources
AT agostoperezfranciscoj animputationplatformtoenhanceintegrationofricegeneticresources
AT chebotarovdmytro animputationplatformtoenhanceintegrationofricegeneticresources
AT shiyuxin animputationplatformtoenhanceintegrationofricegeneticresources
AT marchinijonathan animputationplatformtoenhanceintegrationofricegeneticresources
AT fitzgeraldmelissa animputationplatformtoenhanceintegrationofricegeneticresources
AT mcnallykennethl animputationplatformtoenhanceintegrationofricegeneticresources
AT alexandrovnickolai animputationplatformtoenhanceintegrationofricegeneticresources
AT mccouchsusanr animputationplatformtoenhanceintegrationofricegeneticresources
AT wangdianer imputationplatformtoenhanceintegrationofricegeneticresources
AT agostoperezfranciscoj imputationplatformtoenhanceintegrationofricegeneticresources
AT chebotarovdmytro imputationplatformtoenhanceintegrationofricegeneticresources
AT shiyuxin imputationplatformtoenhanceintegrationofricegeneticresources
AT marchinijonathan imputationplatformtoenhanceintegrationofricegeneticresources
AT fitzgeraldmelissa imputationplatformtoenhanceintegrationofricegeneticresources
AT mcnallykennethl imputationplatformtoenhanceintegrationofricegeneticresources
AT alexandrovnickolai imputationplatformtoenhanceintegrationofricegeneticresources
AT mccouchsusanr imputationplatformtoenhanceintegrationofricegeneticresources