Cargando…
Unsupervised Medical Image Segmentation Based on the Local Center of Mass
Image segmentation is a critical step in numerous medical imaging studies, which can be facilitated by automatic computational techniques. Supervised methods, although highly effective, require large training datasets of manually labeled images that are labor-intensive to produce. Unsupervised metho...
Autores principales: | Aganj, Iman, Harisinghani, Mukesh G., Weissleder, Ralph, Fischl, Bruce |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115387/ https://www.ncbi.nlm.nih.gov/pubmed/30158534 http://dx.doi.org/10.1038/s41598-018-31333-5 |
Ejemplares similares
-
Multi-Atlas Image Soft Segmentation via Computation of the Expected Label Value
por: Aganj, Iman, et al.
Publicado: (2021) -
Sensitive, Noninvasive Detection of Lymph Node Metastases
por: Harisinghani, Mukesh G, et al.
Publicado: (2004) -
Exploratory Correlation of The Human Structural Connectome with Non-MRI Variables in Alzheimer’s Disease
por: Aganj, Iman, et al.
Publicado: (2023) -
Unsupervised segmentation of mass spectrometric ion images characterizes morphology of tissues
por: Guo, Dan, et al.
Publicado: (2019) -
An unsupervised strategy for biomedical image segmentation
por: Rodríguez, Roberto, et al.
Publicado: (2010)