Cargando…

A Sensitive Thresholding Method for Confocal Laser Scanning Microscope Image Stacks of Microbial Biofilms

Biofilms are surface-attached microbial communities whose architecture can be captured with confocal microscopy. Manual or automatic thresholding of acquired images is often needed to help distinguish biofilm biomass from background noise. However, manual thresholding is subjective and current autom...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Ting L., Eisenberg, Marisa C., Hayashi, Michael A. L., Gonzalez-Cabezas, Carlos, Foxman, Betsy, Marrs, Carl F., Rickard, Alexander H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115396/
https://www.ncbi.nlm.nih.gov/pubmed/30158655
http://dx.doi.org/10.1038/s41598-018-31012-5
_version_ 1783351374284587008
author Luo, Ting L.
Eisenberg, Marisa C.
Hayashi, Michael A. L.
Gonzalez-Cabezas, Carlos
Foxman, Betsy
Marrs, Carl F.
Rickard, Alexander H.
author_facet Luo, Ting L.
Eisenberg, Marisa C.
Hayashi, Michael A. L.
Gonzalez-Cabezas, Carlos
Foxman, Betsy
Marrs, Carl F.
Rickard, Alexander H.
author_sort Luo, Ting L.
collection PubMed
description Biofilms are surface-attached microbial communities whose architecture can be captured with confocal microscopy. Manual or automatic thresholding of acquired images is often needed to help distinguish biofilm biomass from background noise. However, manual thresholding is subjective and current automatic thresholding methods can lead to loss of meaningful data. Here, we describe an automatic thresholding method designed for confocal fluorescent signal, termed the biovolume elasticity method (BEM). We evaluated BEM using confocal image stacks of oral biofilms grown in pooled human saliva. Image stacks were thresholded manually and automatically with three different methods; Otsu, iterative selection (IS), and BEM. Effects on biovolume, surface area, and number of objects detected indicated that the BEM was the least aggressive at removing signal, and provided the greatest visual and quantitative acuity of single cells. Thus, thresholding with BEM offers a sensitive, automatic, and tunable method to maintain biofilm architectural properties for subsequent analysis.
format Online
Article
Text
id pubmed-6115396
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-61153962018-09-04 A Sensitive Thresholding Method for Confocal Laser Scanning Microscope Image Stacks of Microbial Biofilms Luo, Ting L. Eisenberg, Marisa C. Hayashi, Michael A. L. Gonzalez-Cabezas, Carlos Foxman, Betsy Marrs, Carl F. Rickard, Alexander H. Sci Rep Article Biofilms are surface-attached microbial communities whose architecture can be captured with confocal microscopy. Manual or automatic thresholding of acquired images is often needed to help distinguish biofilm biomass from background noise. However, manual thresholding is subjective and current automatic thresholding methods can lead to loss of meaningful data. Here, we describe an automatic thresholding method designed for confocal fluorescent signal, termed the biovolume elasticity method (BEM). We evaluated BEM using confocal image stacks of oral biofilms grown in pooled human saliva. Image stacks were thresholded manually and automatically with three different methods; Otsu, iterative selection (IS), and BEM. Effects on biovolume, surface area, and number of objects detected indicated that the BEM was the least aggressive at removing signal, and provided the greatest visual and quantitative acuity of single cells. Thus, thresholding with BEM offers a sensitive, automatic, and tunable method to maintain biofilm architectural properties for subsequent analysis. Nature Publishing Group UK 2018-08-29 /pmc/articles/PMC6115396/ /pubmed/30158655 http://dx.doi.org/10.1038/s41598-018-31012-5 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Luo, Ting L.
Eisenberg, Marisa C.
Hayashi, Michael A. L.
Gonzalez-Cabezas, Carlos
Foxman, Betsy
Marrs, Carl F.
Rickard, Alexander H.
A Sensitive Thresholding Method for Confocal Laser Scanning Microscope Image Stacks of Microbial Biofilms
title A Sensitive Thresholding Method for Confocal Laser Scanning Microscope Image Stacks of Microbial Biofilms
title_full A Sensitive Thresholding Method for Confocal Laser Scanning Microscope Image Stacks of Microbial Biofilms
title_fullStr A Sensitive Thresholding Method for Confocal Laser Scanning Microscope Image Stacks of Microbial Biofilms
title_full_unstemmed A Sensitive Thresholding Method for Confocal Laser Scanning Microscope Image Stacks of Microbial Biofilms
title_short A Sensitive Thresholding Method for Confocal Laser Scanning Microscope Image Stacks of Microbial Biofilms
title_sort sensitive thresholding method for confocal laser scanning microscope image stacks of microbial biofilms
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115396/
https://www.ncbi.nlm.nih.gov/pubmed/30158655
http://dx.doi.org/10.1038/s41598-018-31012-5
work_keys_str_mv AT luotingl asensitivethresholdingmethodforconfocallaserscanningmicroscopeimagestacksofmicrobialbiofilms
AT eisenbergmarisac asensitivethresholdingmethodforconfocallaserscanningmicroscopeimagestacksofmicrobialbiofilms
AT hayashimichaelal asensitivethresholdingmethodforconfocallaserscanningmicroscopeimagestacksofmicrobialbiofilms
AT gonzalezcabezascarlos asensitivethresholdingmethodforconfocallaserscanningmicroscopeimagestacksofmicrobialbiofilms
AT foxmanbetsy asensitivethresholdingmethodforconfocallaserscanningmicroscopeimagestacksofmicrobialbiofilms
AT marrscarlf asensitivethresholdingmethodforconfocallaserscanningmicroscopeimagestacksofmicrobialbiofilms
AT rickardalexanderh asensitivethresholdingmethodforconfocallaserscanningmicroscopeimagestacksofmicrobialbiofilms
AT luotingl sensitivethresholdingmethodforconfocallaserscanningmicroscopeimagestacksofmicrobialbiofilms
AT eisenbergmarisac sensitivethresholdingmethodforconfocallaserscanningmicroscopeimagestacksofmicrobialbiofilms
AT hayashimichaelal sensitivethresholdingmethodforconfocallaserscanningmicroscopeimagestacksofmicrobialbiofilms
AT gonzalezcabezascarlos sensitivethresholdingmethodforconfocallaserscanningmicroscopeimagestacksofmicrobialbiofilms
AT foxmanbetsy sensitivethresholdingmethodforconfocallaserscanningmicroscopeimagestacksofmicrobialbiofilms
AT marrscarlf sensitivethresholdingmethodforconfocallaserscanningmicroscopeimagestacksofmicrobialbiofilms
AT rickardalexanderh sensitivethresholdingmethodforconfocallaserscanningmicroscopeimagestacksofmicrobialbiofilms