Cargando…
A molecular switch orchestrates enzyme specificity and secretory granule morphology
Regulated secretion is an essential process where molecules destined for export are directed to membranous secretory granules, where they undergo packaging and maturation. Here, we identify a gene (pgant9) that influences the structure and shape of secretory granules within the Drosophila salivary g...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115407/ https://www.ncbi.nlm.nih.gov/pubmed/30158631 http://dx.doi.org/10.1038/s41467-018-05978-9 |
_version_ | 1783351376847306752 |
---|---|
author | Ji, Suena Samara, Nadine L. Revoredo, Leslie Zhang, Liping Tran, Duy T. Muirhead, Kayla Tabak, Lawrence A. Ten Hagen, Kelly G. |
author_facet | Ji, Suena Samara, Nadine L. Revoredo, Leslie Zhang, Liping Tran, Duy T. Muirhead, Kayla Tabak, Lawrence A. Ten Hagen, Kelly G. |
author_sort | Ji, Suena |
collection | PubMed |
description | Regulated secretion is an essential process where molecules destined for export are directed to membranous secretory granules, where they undergo packaging and maturation. Here, we identify a gene (pgant9) that influences the structure and shape of secretory granules within the Drosophila salivary gland. Loss of pgant9, which encodes an O-glycosyltransferase, results in secretory granules with an irregular, shard-like morphology, and altered glycosylation of cargo. Interestingly, pgant9 undergoes a splicing event that acts as a molecular switch to alter the charge of a loop controlling access to the active site of the enzyme. The splice variant with the negatively charged loop glycosylates the positively charged secretory cargo and rescues secretory granule morphology. Our study highlights a mechanism for dictating substrate specificity within the O-glycosyltransferase enzyme family. Moreover, our in vitro and in vivo studies suggest that the glycosylation status of secretory cargo influences the morphology of maturing secretory granules. |
format | Online Article Text |
id | pubmed-6115407 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-61154072018-08-31 A molecular switch orchestrates enzyme specificity and secretory granule morphology Ji, Suena Samara, Nadine L. Revoredo, Leslie Zhang, Liping Tran, Duy T. Muirhead, Kayla Tabak, Lawrence A. Ten Hagen, Kelly G. Nat Commun Article Regulated secretion is an essential process where molecules destined for export are directed to membranous secretory granules, where they undergo packaging and maturation. Here, we identify a gene (pgant9) that influences the structure and shape of secretory granules within the Drosophila salivary gland. Loss of pgant9, which encodes an O-glycosyltransferase, results in secretory granules with an irregular, shard-like morphology, and altered glycosylation of cargo. Interestingly, pgant9 undergoes a splicing event that acts as a molecular switch to alter the charge of a loop controlling access to the active site of the enzyme. The splice variant with the negatively charged loop glycosylates the positively charged secretory cargo and rescues secretory granule morphology. Our study highlights a mechanism for dictating substrate specificity within the O-glycosyltransferase enzyme family. Moreover, our in vitro and in vivo studies suggest that the glycosylation status of secretory cargo influences the morphology of maturing secretory granules. Nature Publishing Group UK 2018-08-29 /pmc/articles/PMC6115407/ /pubmed/30158631 http://dx.doi.org/10.1038/s41467-018-05978-9 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Ji, Suena Samara, Nadine L. Revoredo, Leslie Zhang, Liping Tran, Duy T. Muirhead, Kayla Tabak, Lawrence A. Ten Hagen, Kelly G. A molecular switch orchestrates enzyme specificity and secretory granule morphology |
title | A molecular switch orchestrates enzyme specificity and secretory granule morphology |
title_full | A molecular switch orchestrates enzyme specificity and secretory granule morphology |
title_fullStr | A molecular switch orchestrates enzyme specificity and secretory granule morphology |
title_full_unstemmed | A molecular switch orchestrates enzyme specificity and secretory granule morphology |
title_short | A molecular switch orchestrates enzyme specificity and secretory granule morphology |
title_sort | molecular switch orchestrates enzyme specificity and secretory granule morphology |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115407/ https://www.ncbi.nlm.nih.gov/pubmed/30158631 http://dx.doi.org/10.1038/s41467-018-05978-9 |
work_keys_str_mv | AT jisuena amolecularswitchorchestratesenzymespecificityandsecretorygranulemorphology AT samaranadinel amolecularswitchorchestratesenzymespecificityandsecretorygranulemorphology AT revoredoleslie amolecularswitchorchestratesenzymespecificityandsecretorygranulemorphology AT zhangliping amolecularswitchorchestratesenzymespecificityandsecretorygranulemorphology AT tranduyt amolecularswitchorchestratesenzymespecificityandsecretorygranulemorphology AT muirheadkayla amolecularswitchorchestratesenzymespecificityandsecretorygranulemorphology AT tabaklawrencea amolecularswitchorchestratesenzymespecificityandsecretorygranulemorphology AT tenhagenkellyg amolecularswitchorchestratesenzymespecificityandsecretorygranulemorphology AT jisuena molecularswitchorchestratesenzymespecificityandsecretorygranulemorphology AT samaranadinel molecularswitchorchestratesenzymespecificityandsecretorygranulemorphology AT revoredoleslie molecularswitchorchestratesenzymespecificityandsecretorygranulemorphology AT zhangliping molecularswitchorchestratesenzymespecificityandsecretorygranulemorphology AT tranduyt molecularswitchorchestratesenzymespecificityandsecretorygranulemorphology AT muirheadkayla molecularswitchorchestratesenzymespecificityandsecretorygranulemorphology AT tabaklawrencea molecularswitchorchestratesenzymespecificityandsecretorygranulemorphology AT tenhagenkellyg molecularswitchorchestratesenzymespecificityandsecretorygranulemorphology |