Cargando…
A novel logistic regression model combining semi-supervised learning and active learning for disease classification
Traditional supervised learning classifier needs a lot of labeled samples to achieve good performance, however in many biological datasets there is only a small size of labeled samples and the remaining samples are unlabeled. Labeling these unlabeled samples manually is difficult or expensive. Techn...
Autores principales: | Chai, Hua, Liang, Yong, Wang, Sai, Shen, Hai-wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115447/ https://www.ncbi.nlm.nih.gov/pubmed/30158596 http://dx.doi.org/10.1038/s41598-018-31395-5 |
Ejemplares similares
-
Deep semi-supervised learning for brain tumor classification
por: Ge, Chenjie, et al.
Publicado: (2020) -
Self-supervised Learning for Semi-supervised Time Series Classification
por: Jawed, Shayan, et al.
Publicado: (2020) -
A new semi-supervised learning model combined with Cox and SP-AFT models in cancer survival analysis
por: Chai, Hua, et al.
Publicado: (2017) -
Active semi-supervised learning for biological data classification
por: Camargo, Guilherme, et al.
Publicado: (2020) -
A review of semi-supervised learning for text classification
por: Duarte, José Marcio, et al.
Publicado: (2023)