Cargando…
In vivo phosphoproteomics reveals kinase activity profiles that predict treatment outcome in triple-negative breast cancer
Triple-negative breast cancer (TNBC) lacks prognostic and predictive markers. Here, we use high-throughput phosphoproteomics to build a functional TNBC taxonomy. A cluster of 159 phosphosites is upregulated in relapsed cases of a training set (n = 34 patients), with 11 hyperactive kinases accounting...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115463/ https://www.ncbi.nlm.nih.gov/pubmed/30158526 http://dx.doi.org/10.1038/s41467-018-05742-z |
_version_ | 1783351389942972416 |
---|---|
author | Zagorac, Ivana Fernandez-Gaitero, Sara Penning, Renske Post, Harm Bueno, Maria J. Mouron, Silvana Manso, Luis Morente, Manuel M. Alonso, Soledad Serra, Violeta Muñoz, Javier Gómez-López, Gonzalo Lopez-Acosta, Jose Francisco Jimenez-Renard, Veronica Gris-Oliver, Albert Al-Shahrour, Fatima Piñeiro-Yañez, Elena Montoya-Suarez, Jose Luis Apala, Juan V. Moreno-Torres, Amalia Colomer, Ramon Dopazo, Ana Heck, Albert J. R. Altelaar, Maarten Quintela-Fandino, Miguel |
author_facet | Zagorac, Ivana Fernandez-Gaitero, Sara Penning, Renske Post, Harm Bueno, Maria J. Mouron, Silvana Manso, Luis Morente, Manuel M. Alonso, Soledad Serra, Violeta Muñoz, Javier Gómez-López, Gonzalo Lopez-Acosta, Jose Francisco Jimenez-Renard, Veronica Gris-Oliver, Albert Al-Shahrour, Fatima Piñeiro-Yañez, Elena Montoya-Suarez, Jose Luis Apala, Juan V. Moreno-Torres, Amalia Colomer, Ramon Dopazo, Ana Heck, Albert J. R. Altelaar, Maarten Quintela-Fandino, Miguel |
author_sort | Zagorac, Ivana |
collection | PubMed |
description | Triple-negative breast cancer (TNBC) lacks prognostic and predictive markers. Here, we use high-throughput phosphoproteomics to build a functional TNBC taxonomy. A cluster of 159 phosphosites is upregulated in relapsed cases of a training set (n = 34 patients), with 11 hyperactive kinases accounting for this phosphoprofile. A mass-spectrometry-to-immunohistochemistry translation step, assessing 2 independent validation sets, reveals 6 kinases with preserved independent prognostic value. The kinases split the validation set into two patterns: one without hyperactive kinases being associated with a >90% relapse-free rate, and the other one showing ≥1 hyperactive kinase and being associated with an up to 9.5-fold higher relapse risk. Each kinase pattern encompasses different mutational patterns, simplifying mutation-based taxonomy. Drug regimens designed based on these 6 kinases show promising antitumour activity in TNBC cell lines and patient-derived xenografts. In summary, the present study elucidates phosphosites and kinases implicated in TNBC and suggests a target-based clinical classification system for TNBC. |
format | Online Article Text |
id | pubmed-6115463 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-61154632018-08-31 In vivo phosphoproteomics reveals kinase activity profiles that predict treatment outcome in triple-negative breast cancer Zagorac, Ivana Fernandez-Gaitero, Sara Penning, Renske Post, Harm Bueno, Maria J. Mouron, Silvana Manso, Luis Morente, Manuel M. Alonso, Soledad Serra, Violeta Muñoz, Javier Gómez-López, Gonzalo Lopez-Acosta, Jose Francisco Jimenez-Renard, Veronica Gris-Oliver, Albert Al-Shahrour, Fatima Piñeiro-Yañez, Elena Montoya-Suarez, Jose Luis Apala, Juan V. Moreno-Torres, Amalia Colomer, Ramon Dopazo, Ana Heck, Albert J. R. Altelaar, Maarten Quintela-Fandino, Miguel Nat Commun Article Triple-negative breast cancer (TNBC) lacks prognostic and predictive markers. Here, we use high-throughput phosphoproteomics to build a functional TNBC taxonomy. A cluster of 159 phosphosites is upregulated in relapsed cases of a training set (n = 34 patients), with 11 hyperactive kinases accounting for this phosphoprofile. A mass-spectrometry-to-immunohistochemistry translation step, assessing 2 independent validation sets, reveals 6 kinases with preserved independent prognostic value. The kinases split the validation set into two patterns: one without hyperactive kinases being associated with a >90% relapse-free rate, and the other one showing ≥1 hyperactive kinase and being associated with an up to 9.5-fold higher relapse risk. Each kinase pattern encompasses different mutational patterns, simplifying mutation-based taxonomy. Drug regimens designed based on these 6 kinases show promising antitumour activity in TNBC cell lines and patient-derived xenografts. In summary, the present study elucidates phosphosites and kinases implicated in TNBC and suggests a target-based clinical classification system for TNBC. Nature Publishing Group UK 2018-08-29 /pmc/articles/PMC6115463/ /pubmed/30158526 http://dx.doi.org/10.1038/s41467-018-05742-z Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Zagorac, Ivana Fernandez-Gaitero, Sara Penning, Renske Post, Harm Bueno, Maria J. Mouron, Silvana Manso, Luis Morente, Manuel M. Alonso, Soledad Serra, Violeta Muñoz, Javier Gómez-López, Gonzalo Lopez-Acosta, Jose Francisco Jimenez-Renard, Veronica Gris-Oliver, Albert Al-Shahrour, Fatima Piñeiro-Yañez, Elena Montoya-Suarez, Jose Luis Apala, Juan V. Moreno-Torres, Amalia Colomer, Ramon Dopazo, Ana Heck, Albert J. R. Altelaar, Maarten Quintela-Fandino, Miguel In vivo phosphoproteomics reveals kinase activity profiles that predict treatment outcome in triple-negative breast cancer |
title | In vivo phosphoproteomics reveals kinase activity profiles that predict treatment outcome in triple-negative breast cancer |
title_full | In vivo phosphoproteomics reveals kinase activity profiles that predict treatment outcome in triple-negative breast cancer |
title_fullStr | In vivo phosphoproteomics reveals kinase activity profiles that predict treatment outcome in triple-negative breast cancer |
title_full_unstemmed | In vivo phosphoproteomics reveals kinase activity profiles that predict treatment outcome in triple-negative breast cancer |
title_short | In vivo phosphoproteomics reveals kinase activity profiles that predict treatment outcome in triple-negative breast cancer |
title_sort | in vivo phosphoproteomics reveals kinase activity profiles that predict treatment outcome in triple-negative breast cancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115463/ https://www.ncbi.nlm.nih.gov/pubmed/30158526 http://dx.doi.org/10.1038/s41467-018-05742-z |
work_keys_str_mv | AT zagoracivana invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT fernandezgaiterosara invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT penningrenske invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT postharm invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT buenomariaj invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT mouronsilvana invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT mansoluis invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT morentemanuelm invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT alonsosoledad invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT serravioleta invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT munozjavier invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT gomezlopezgonzalo invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT lopezacostajosefrancisco invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT jimenezrenardveronica invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT grisoliveralbert invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT alshahrourfatima invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT pineiroyanezelena invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT montoyasuarezjoseluis invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT apalajuanv invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT morenotorresamalia invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT colomerramon invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT dopazoana invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT heckalbertjr invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT altelaarmaarten invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer AT quintelafandinomiguel invivophosphoproteomicsrevealskinaseactivityprofilesthatpredicttreatmentoutcomeintriplenegativebreastcancer |