Cargando…
VmPacC Is Required for Acidification and Virulence in Valsa mali
The role of the transcription factor PacC has been characterised in several pathogenic fungi, and it affects virulence via several mechanisms. In this study, we examined the role of the PacC homolog VmPacC in Valsa mali, the causal agent of apple canker disease. We found that the expression of VmPac...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115506/ https://www.ncbi.nlm.nih.gov/pubmed/30190714 http://dx.doi.org/10.3389/fmicb.2018.01981 |
_version_ | 1783351400311291904 |
---|---|
author | Wu, Yuxing Yin, Zhiyuan Xu, Liangsheng Feng, Hao Huang, Lili |
author_facet | Wu, Yuxing Yin, Zhiyuan Xu, Liangsheng Feng, Hao Huang, Lili |
author_sort | Wu, Yuxing |
collection | PubMed |
description | The role of the transcription factor PacC has been characterised in several pathogenic fungi, and it affects virulence via several mechanisms. In this study, we examined the role of the PacC homolog VmPacC in Valsa mali, the causal agent of apple canker disease. We found that the expression of VmPacC was up-regulated in neutral and alkaline pH and during infection. At pH 6–10, the radial growth of a VmPacC deletion mutant decreased compared to wild-type. In addition, the sensitivity to oxidative stress of the VmPacC deletion mutant was impaired, as its growth was more severely inhibited by H(2)O(2) than that of the wild-type. The lesion size caused by the VmPacC deletion mutant was smaller than that of the wild-type on apple leaves and twigs. Interestingly, expression of pectinase genes increased in deletion mutant during infection. To further confirm the negative regulation, we generated dominant activated C-27 allele mutants that constitutively express VmPacC. The pectinase activity of activated mutants was reduced at pH 4. We further observed that V. mali can acidify the pH during infection, and that the capacity for acidification was impaired after VmPacC deletion. Furthermore, VmPacC is involved in the generation of citric acid, which affects virulence. These results indicate that VmPacC is part of the fungal responses to neutral and alkaline pH and oxidative stress. More importantly, VmPacC is required for acidification of its environment and for full virulence in V. mali. |
format | Online Article Text |
id | pubmed-6115506 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-61155062018-09-06 VmPacC Is Required for Acidification and Virulence in Valsa mali Wu, Yuxing Yin, Zhiyuan Xu, Liangsheng Feng, Hao Huang, Lili Front Microbiol Microbiology The role of the transcription factor PacC has been characterised in several pathogenic fungi, and it affects virulence via several mechanisms. In this study, we examined the role of the PacC homolog VmPacC in Valsa mali, the causal agent of apple canker disease. We found that the expression of VmPacC was up-regulated in neutral and alkaline pH and during infection. At pH 6–10, the radial growth of a VmPacC deletion mutant decreased compared to wild-type. In addition, the sensitivity to oxidative stress of the VmPacC deletion mutant was impaired, as its growth was more severely inhibited by H(2)O(2) than that of the wild-type. The lesion size caused by the VmPacC deletion mutant was smaller than that of the wild-type on apple leaves and twigs. Interestingly, expression of pectinase genes increased in deletion mutant during infection. To further confirm the negative regulation, we generated dominant activated C-27 allele mutants that constitutively express VmPacC. The pectinase activity of activated mutants was reduced at pH 4. We further observed that V. mali can acidify the pH during infection, and that the capacity for acidification was impaired after VmPacC deletion. Furthermore, VmPacC is involved in the generation of citric acid, which affects virulence. These results indicate that VmPacC is part of the fungal responses to neutral and alkaline pH and oxidative stress. More importantly, VmPacC is required for acidification of its environment and for full virulence in V. mali. Frontiers Media S.A. 2018-08-23 /pmc/articles/PMC6115506/ /pubmed/30190714 http://dx.doi.org/10.3389/fmicb.2018.01981 Text en Copyright © 2018 Wu, Yin, Xu, Feng and Huang. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Wu, Yuxing Yin, Zhiyuan Xu, Liangsheng Feng, Hao Huang, Lili VmPacC Is Required for Acidification and Virulence in Valsa mali |
title | VmPacC Is Required for Acidification and Virulence in Valsa mali |
title_full | VmPacC Is Required for Acidification and Virulence in Valsa mali |
title_fullStr | VmPacC Is Required for Acidification and Virulence in Valsa mali |
title_full_unstemmed | VmPacC Is Required for Acidification and Virulence in Valsa mali |
title_short | VmPacC Is Required for Acidification and Virulence in Valsa mali |
title_sort | vmpacc is required for acidification and virulence in valsa mali |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115506/ https://www.ncbi.nlm.nih.gov/pubmed/30190714 http://dx.doi.org/10.3389/fmicb.2018.01981 |
work_keys_str_mv | AT wuyuxing vmpaccisrequiredforacidificationandvirulenceinvalsamali AT yinzhiyuan vmpaccisrequiredforacidificationandvirulenceinvalsamali AT xuliangsheng vmpaccisrequiredforacidificationandvirulenceinvalsamali AT fenghao vmpaccisrequiredforacidificationandvirulenceinvalsamali AT huanglili vmpaccisrequiredforacidificationandvirulenceinvalsamali |