Cargando…
Spontaneous Learning of Visual Structures in Domestic Chicks
SIMPLE SUMMARY: Our aim is to investigate the recognition of the structure of multi-element configurations; one mechanism that supports communicative functions in different species. Cognitive mechanisms involved in this ability might not have evolved specifically for communicative use, but derive fr...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115858/ https://www.ncbi.nlm.nih.gov/pubmed/30082590 http://dx.doi.org/10.3390/ani8080135 |
Sumario: | SIMPLE SUMMARY: Our aim is to investigate the recognition of the structure of multi-element configurations; one mechanism that supports communicative functions in different species. Cognitive mechanisms involved in this ability might not have evolved specifically for communicative use, but derive from other functions. Thus, it is crucial to study these abilities in species that are not vocal learners and with stimuli from other modalities. We know already that domestic chicks can learn the temporal statistical structure of sequences of visual shapes, however their abilities to encode the spatial structure of visual patterns (configurations composed of multiple visual elements presented simultaneously side-by-side) is much less known. Using filial imprinting learning, we showed that chicks spontaneously recognize the structure of their imprinting stimulus, preferring it to one composed of the same elements in different configurations. Moreover, we found that in their affiliative responses chicks give priority to information located at the stimulus edges, a phenomenon that was so far observed only with temporal sequences. This first evidence of a spontaneous edge bias with spatial stimuli further stresses the importance of studying similarities and differences between the processing of linguistic and nonlinguistic stimuli and of stimuli presented in various sensory modalities. ABSTRACT: Effective communication crucially depends on the ability to produce and recognize structured signals, as apparent in language and birdsong. Although it is not clear to what extent similar syntactic-like abilities can be identified in other animals, recently we reported that domestic chicks can learn abstract visual patterns and the statistical structure defined by a temporal sequence of visual shapes. However, little is known about chicks’ ability to process spatial/positional information from visual configurations. Here, we used filial imprinting as an unsupervised learning mechanism to study spontaneous encoding of the structure of a configuration of different shapes. After being exposed to a triplet of shapes (ABC or CAB), chicks could discriminate those triplets from a permutation of the same shapes in different order (CAB or ABC), revealing a sensitivity to the spatial arrangement of the elements. When tested with a fragment taken from the imprinting triplet that followed the familiar adjacency-relationships (AB or BC) vs. one in which the shapes maintained their position with respect to the stimulus edges (AC), chicks revealed a preference for the configuration with familiar edge elements, showing an edge bias previously found only with temporal sequences. |
---|