Cargando…
Feasibility of Reviewing Digital Food Images for Dietary Assessment among Nutrition Professionals
Validity of image-assisted and image-based dietary assessment methods relies on the accuracy of portion size estimation based on food images. However, little is known on the ability of nutrition professionals in assessing dietary intake based on digital food images. This study aims to examine the ab...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115988/ https://www.ncbi.nlm.nih.gov/pubmed/30060528 http://dx.doi.org/10.3390/nu10080984 |
_version_ | 1783351507914063872 |
---|---|
author | Ainaa Fatehah, Ayob Poh, Bee Koon Nik Shanita, Safii Wong, Jyh Eiin |
author_facet | Ainaa Fatehah, Ayob Poh, Bee Koon Nik Shanita, Safii Wong, Jyh Eiin |
author_sort | Ainaa Fatehah, Ayob |
collection | PubMed |
description | Validity of image-assisted and image-based dietary assessment methods relies on the accuracy of portion size estimation based on food images. However, little is known on the ability of nutrition professionals in assessing dietary intake based on digital food images. This study aims to examine the ability of nutrition professionals in reviewing food images with regard to food item identification and portion size estimation. Thirty-eight nutritionists, dietitians, and nutrition researchers participated in this study. Through an online questionnaire, participants’ accuracy in identifying food items and estimating portion sizes of two sets of digital food images presenting a meal on a plate (Image PL) and in a bowl (Image BW) were tested. Participants reported higher accuracy in interpreting Image BW compared to Image PL, both in terms of accuracy in food identification (75.3 ± 17.6 vs. 68.9 ± 17.1%) and percentage difference in portion size estimation (44.3 ± 16.6 vs. 47.6 ± 21.2%). Weight of raw vegetables was significantly underestimated (−45.1 ± 22.8% vs. −21.2 ± 37.4%), while drink was significantly overestimated (40.1 ± 45.8% vs. 26.1 ± 32.2) in both images. Less than one-third of the participants estimated portion size within 10% of actual weight for Image PL (23.7%) and Image BW (32.3%). Accuracy of nutrition professionals in reviewing food images could be further improved with training on better perception of portion sizes from images. |
format | Online Article Text |
id | pubmed-6115988 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61159882018-09-04 Feasibility of Reviewing Digital Food Images for Dietary Assessment among Nutrition Professionals Ainaa Fatehah, Ayob Poh, Bee Koon Nik Shanita, Safii Wong, Jyh Eiin Nutrients Article Validity of image-assisted and image-based dietary assessment methods relies on the accuracy of portion size estimation based on food images. However, little is known on the ability of nutrition professionals in assessing dietary intake based on digital food images. This study aims to examine the ability of nutrition professionals in reviewing food images with regard to food item identification and portion size estimation. Thirty-eight nutritionists, dietitians, and nutrition researchers participated in this study. Through an online questionnaire, participants’ accuracy in identifying food items and estimating portion sizes of two sets of digital food images presenting a meal on a plate (Image PL) and in a bowl (Image BW) were tested. Participants reported higher accuracy in interpreting Image BW compared to Image PL, both in terms of accuracy in food identification (75.3 ± 17.6 vs. 68.9 ± 17.1%) and percentage difference in portion size estimation (44.3 ± 16.6 vs. 47.6 ± 21.2%). Weight of raw vegetables was significantly underestimated (−45.1 ± 22.8% vs. −21.2 ± 37.4%), while drink was significantly overestimated (40.1 ± 45.8% vs. 26.1 ± 32.2) in both images. Less than one-third of the participants estimated portion size within 10% of actual weight for Image PL (23.7%) and Image BW (32.3%). Accuracy of nutrition professionals in reviewing food images could be further improved with training on better perception of portion sizes from images. MDPI 2018-07-27 /pmc/articles/PMC6115988/ /pubmed/30060528 http://dx.doi.org/10.3390/nu10080984 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ainaa Fatehah, Ayob Poh, Bee Koon Nik Shanita, Safii Wong, Jyh Eiin Feasibility of Reviewing Digital Food Images for Dietary Assessment among Nutrition Professionals |
title | Feasibility of Reviewing Digital Food Images for Dietary Assessment among Nutrition Professionals |
title_full | Feasibility of Reviewing Digital Food Images for Dietary Assessment among Nutrition Professionals |
title_fullStr | Feasibility of Reviewing Digital Food Images for Dietary Assessment among Nutrition Professionals |
title_full_unstemmed | Feasibility of Reviewing Digital Food Images for Dietary Assessment among Nutrition Professionals |
title_short | Feasibility of Reviewing Digital Food Images for Dietary Assessment among Nutrition Professionals |
title_sort | feasibility of reviewing digital food images for dietary assessment among nutrition professionals |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6115988/ https://www.ncbi.nlm.nih.gov/pubmed/30060528 http://dx.doi.org/10.3390/nu10080984 |
work_keys_str_mv | AT ainaafatehahayob feasibilityofreviewingdigitalfoodimagesfordietaryassessmentamongnutritionprofessionals AT pohbeekoon feasibilityofreviewingdigitalfoodimagesfordietaryassessmentamongnutritionprofessionals AT nikshanitasafii feasibilityofreviewingdigitalfoodimagesfordietaryassessmentamongnutritionprofessionals AT wongjyheiin feasibilityofreviewingdigitalfoodimagesfordietaryassessmentamongnutritionprofessionals |