Cargando…

GABA(B) Receptors Augment TRPC3-Mediated Slow Excitatory Postsynaptic Current to Regulate Cerebellar Purkinje Neuron Response to Type-1 Metabotropic Glutamate Receptor Activation

During strong parallel fiber stimulation, glutamate released at parallel fiber-Purkinje cell synapses activates type-1 metabotropic glutamate receptor (mGluR1) to trigger a slow excitatory postsynaptic current (sEPSC) in cerebellar Purkinje neurons. The sEPSC is mediated by transient receptor potent...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Jinbin, Zhu, Michael X.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6116156/
https://www.ncbi.nlm.nih.gov/pubmed/30060610
http://dx.doi.org/10.3390/cells7080090
Descripción
Sumario:During strong parallel fiber stimulation, glutamate released at parallel fiber-Purkinje cell synapses activates type-1 metabotropic glutamate receptor (mGluR1) to trigger a slow excitatory postsynaptic current (sEPSC) in cerebellar Purkinje neurons. The sEPSC is mediated by transient receptor potential canonical 3 (TRPC3) channels. Often co-localized with mGluR1 in Purkinje neuron dendrites are type B γ-aminobutyric acid receptors (GABA(B)Rs) that respond to inhibitory synaptic inputs from interneurons located in the molecular layer of cerebellar cortex. It has been shown that activation of postsynaptic GABA(B)Rs potentiates mGluR1 activation-evoked sEPSC in Purkinje cells, but the underlying molecular mechanism remains elusive. Here we report that the augmentation of mGluR1-sEPSC by GABA(B)R activation in Purkinje neurons is completely absent in TRPC3 knockout mice, but totally intact in TRPC1-, TRPC4-, and TRPC1,4,5,6-knockout mice, suggesting that TRPC3 is the only TRPC isoform that mediates the potentiation. Moreover, our results indicate that the potentiation reflects a postsynaptic mechanism that requires both GABA(B)Rs and mGluR1 because it is unaffected by blocking neurotransmission with tetrodotoxin but blocked by inhibiting either GABA(B)Rs or mGluR1. Furthermore, we show that the co-stimulation of GABA(B)Rs has an effect on shaping the response of Purkinje cell firing to mGluR1-sEPSC, revealing a new function of inhibitory input on excitatory neurotransmission. We conclude that postsynaptic GABA(B)Rs regulate Purkinje cell responses to strong glutamatergic stimulation through modulation of mGluR1-TRPC3 coupling. Since mGluR1-TRPC3 coupling is essential in cerebellar long-term depression, synapse elimination, and motor coordination, our findings may have implications in essential cerebellar functions, such as motor coordination and learning.