Cargando…
Application of Metabolomic Tools for Studying Low Molecular-Weight Fraction of Animal Venoms and Poisons
Both venoms and poisonous secretions are complex mixtures that assist in defense, predation, communication, and competition in the animal world. They consist of variable bioactive molecules, such as proteins, peptides, salts and also metabolites. Metabolomics opens up new perspectives for the study...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6116190/ https://www.ncbi.nlm.nih.gov/pubmed/30042318 http://dx.doi.org/10.3390/toxins10080306 |
Sumario: | Both venoms and poisonous secretions are complex mixtures that assist in defense, predation, communication, and competition in the animal world. They consist of variable bioactive molecules, such as proteins, peptides, salts and also metabolites. Metabolomics opens up new perspectives for the study of venoms and poisons as it gives an opportunity to investigate their previously unexplored low molecular-weight components. The aim of this article is to summarize the available literature where metabolomic technologies were used for examining the composition of animal venoms and poisons. The paper discusses only the low molecular-weight components of venoms and poisons collected from snakes, spiders, scorpions, toads, frogs, and ants. An overview is given of the analytical strategies used in the analysis of the metabolic content of the samples. We paid special attention to the classes of compounds identified in various venoms and poisons and potential applications of the small molecules (especially bufadienolides) discovered. The issues that should be more effectively addressed in the studies of animal venoms and poisons include challenges related to sample collection and preparation, species-related chemical diversity of compounds building the metabolome and a need of an online database that would enhance identification of small molecule components of these secretions. |
---|