Cargando…
Multimodal Radiomic Features for the Predicting Gleason Score of Prostate Cancer
Background: Novel radiomic features are enabling the extraction of biological data from routine sequences of MRI images. This study’s purpose was to establish a new model, based on the joint intensity matrix (JIM), to predict the Gleason score (GS) of prostate cancer (PCa) patients. Methods: A retro...
Autores principales: | Chaddad, Ahmad, Kucharczyk, Michael J, Niazi, Tamim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6116195/ https://www.ncbi.nlm.nih.gov/pubmed/30060575 http://dx.doi.org/10.3390/cancers10080249 |
Ejemplares similares
-
Predicting Gleason Score of Prostate Cancer Patients Using Radiomic Analysis
por: Chaddad, Ahmad, et al.
Publicado: (2018) -
Radiomics in Glioblastoma: Current Status and Challenges Facing Clinical Implementation
por: Chaddad, Ahmad, et al.
Publicado: (2019) -
Magnetic Resonance Imaging Based Radiomic Models of Prostate Cancer: A Narrative Review
por: Chaddad, Ahmad, et al.
Publicado: (2021) -
Radiomics Evaluation of Histological Heterogeneity Using Multiscale Textures Derived From 3D Wavelet Transformation of Multispectral Images
por: Chaddad, Ahmad, et al.
Publicado: (2018) -
Advancements in MRI-Based Radiomics and Artificial Intelligence for Prostate Cancer: A Comprehensive Review and Future Prospects
por: Chaddad, Ahmad, et al.
Publicado: (2023)