Cargando…
Fabrication and Characterization of Multiscale PLA Structures Using Integrated Rapid Prototyping and Gas Foaming Technologies
Multiscale structured polymers have been considered as a promising category of functional materials with unique properties. We combined rapid prototyping and gas foaming technologies to fabricate multiscale functional materials of superior mechanical and thermal insulation properties. Through scanni...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6116221/ https://www.ncbi.nlm.nih.gov/pubmed/30060481 http://dx.doi.org/10.3390/nano8080575 |
_version_ | 1783351556019585024 |
---|---|
author | Park, Byung Kyu Hwang, David J. Kwon, Dong Eui Yoon, Tae Jun Lee, Youn-Woo |
author_facet | Park, Byung Kyu Hwang, David J. Kwon, Dong Eui Yoon, Tae Jun Lee, Youn-Woo |
author_sort | Park, Byung Kyu |
collection | PubMed |
description | Multiscale structured polymers have been considered as a promising category of functional materials with unique properties. We combined rapid prototyping and gas foaming technologies to fabricate multiscale functional materials of superior mechanical and thermal insulation properties. Through scanning electron microscope based morphological characterization, formation of multiscale porous structure with nanoscale cellular pores was confirmed. Improvement in mechanical strength is attributed to rearrangement of crystals within CO(2) saturated grid sample. It is also shown that a post-foaming temperature higher than the glass transition temperature deteriorates mechanical strength, providing process guidelines. Thermal decomposition of filament material sets the upper limit of temperature for 3D printed features, characterized by simultaneous differential scanning calorimetry and thermogravimetric analysis. Porosity of the fabricated 3D structured polylactic acid (PLA) foam is controllable by suitable tuning of foaming conditions. The fabricated multiscale 3D structures have potential for thermal insulation applications with lightweight and reasonable mechanical strength. |
format | Online Article Text |
id | pubmed-6116221 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61162212018-08-31 Fabrication and Characterization of Multiscale PLA Structures Using Integrated Rapid Prototyping and Gas Foaming Technologies Park, Byung Kyu Hwang, David J. Kwon, Dong Eui Yoon, Tae Jun Lee, Youn-Woo Nanomaterials (Basel) Article Multiscale structured polymers have been considered as a promising category of functional materials with unique properties. We combined rapid prototyping and gas foaming technologies to fabricate multiscale functional materials of superior mechanical and thermal insulation properties. Through scanning electron microscope based morphological characterization, formation of multiscale porous structure with nanoscale cellular pores was confirmed. Improvement in mechanical strength is attributed to rearrangement of crystals within CO(2) saturated grid sample. It is also shown that a post-foaming temperature higher than the glass transition temperature deteriorates mechanical strength, providing process guidelines. Thermal decomposition of filament material sets the upper limit of temperature for 3D printed features, characterized by simultaneous differential scanning calorimetry and thermogravimetric analysis. Porosity of the fabricated 3D structured polylactic acid (PLA) foam is controllable by suitable tuning of foaming conditions. The fabricated multiscale 3D structures have potential for thermal insulation applications with lightweight and reasonable mechanical strength. MDPI 2018-07-27 /pmc/articles/PMC6116221/ /pubmed/30060481 http://dx.doi.org/10.3390/nano8080575 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Park, Byung Kyu Hwang, David J. Kwon, Dong Eui Yoon, Tae Jun Lee, Youn-Woo Fabrication and Characterization of Multiscale PLA Structures Using Integrated Rapid Prototyping and Gas Foaming Technologies |
title | Fabrication and Characterization of Multiscale PLA Structures Using Integrated Rapid Prototyping and Gas Foaming Technologies |
title_full | Fabrication and Characterization of Multiscale PLA Structures Using Integrated Rapid Prototyping and Gas Foaming Technologies |
title_fullStr | Fabrication and Characterization of Multiscale PLA Structures Using Integrated Rapid Prototyping and Gas Foaming Technologies |
title_full_unstemmed | Fabrication and Characterization of Multiscale PLA Structures Using Integrated Rapid Prototyping and Gas Foaming Technologies |
title_short | Fabrication and Characterization of Multiscale PLA Structures Using Integrated Rapid Prototyping and Gas Foaming Technologies |
title_sort | fabrication and characterization of multiscale pla structures using integrated rapid prototyping and gas foaming technologies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6116221/ https://www.ncbi.nlm.nih.gov/pubmed/30060481 http://dx.doi.org/10.3390/nano8080575 |
work_keys_str_mv | AT parkbyungkyu fabricationandcharacterizationofmultiscaleplastructuresusingintegratedrapidprototypingandgasfoamingtechnologies AT hwangdavidj fabricationandcharacterizationofmultiscaleplastructuresusingintegratedrapidprototypingandgasfoamingtechnologies AT kwondongeui fabricationandcharacterizationofmultiscaleplastructuresusingintegratedrapidprototypingandgasfoamingtechnologies AT yoontaejun fabricationandcharacterizationofmultiscaleplastructuresusingintegratedrapidprototypingandgasfoamingtechnologies AT leeyounwoo fabricationandcharacterizationofmultiscaleplastructuresusingintegratedrapidprototypingandgasfoamingtechnologies |