Cargando…

Tracheal Sound Analysis for Automatic Detection of Respiratory Depression in Adult Patients during Cataract Surgery under Sedation

BACKGROUND: Tracheal sound analysis is a simple way to study the abnormalities of upper airway like airway obstruction. Hence, it may be an effective method for detection of alveolar hypoventilation and respiratory depression. This study was designed to investigate the importance of tracheal sound a...

Descripción completa

Detalles Bibliográficos
Autores principales: Esmaeili, Neda, Rabbani, Hossein, Makaremi, Soheila, Golabbakhsh, Marzieh, Saghaei, Mahmoud, Parviz, Mehdi, Naghibi, Khosro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6116314/
https://www.ncbi.nlm.nih.gov/pubmed/30181962
http://dx.doi.org/10.4103/jmss.JMSS_67_16
Descripción
Sumario:BACKGROUND: Tracheal sound analysis is a simple way to study the abnormalities of upper airway like airway obstruction. Hence, it may be an effective method for detection of alveolar hypoventilation and respiratory depression. This study was designed to investigate the importance of tracheal sound analysis to detect respiratory depression during cataract surgery under sedation. Methods: After Institutional Ethical Committee approval and informed patients’ consent, we studied thirty adults American Society of Anesthesiologists I and II patients scheduled for cataract surgery under sedation anesthesia. Recording of tracheal sounds started 1 min before administration of sedative drugs using a microphone. Recorded sounds were examined by the anesthesiologist to detect periods of respiratory depression longer than 10 s. Then, tracheal sound signals converted to spectrogram images, and image processing was done to detect respiratory depression. Finally, depression periods detected from tracheal sound analysis were compared to the depression periods detected by the anesthesiologist. RESULTS: We extracted five features from spectrogram images of tracheal sounds for the detection of respiratory depression. Then, decision tree and support vector machine (SVM) with Radial Basis Function (RBF) kernel were used to classify the data using these features, where the designed decision tree outperforms the SVM with a sensitivity of 89% and specificity of 97%. CONCLUSIONS: The results of this study show that morphological processing of spectrogram images of tracheal sound signals from a microphone placed over suprasternal notch may reliably provide an early warning of respiratory depression and the onset of airway obstruction in patients under sedation.