Cargando…

A perspective on using experiment and theory to identify design principles in dye-sensitized solar cells

Dye-sensitized solar cells (DSCs) have been the subject of wide-ranging studies for many years because of their potential for large-scale manufacturing using roll-to-roll processing allied to their use of earth abundant raw materials. Two main challenges exist for DSC devices to achieve this goal; u...

Descripción completa

Detalles Bibliográficos
Autores principales: Holliman, Peter J., Kershaw, Christopher, Connell, Arthur, Jones, Eurig W., Hobbs, Robert, Anthony, Rosie, Furnell, Leo, McGettrick, James, Geatches, Dawn, Metz, Sebastian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6116669/
https://www.ncbi.nlm.nih.gov/pubmed/30181788
http://dx.doi.org/10.1080/14686996.2018.1492858
Descripción
Sumario:Dye-sensitized solar cells (DSCs) have been the subject of wide-ranging studies for many years because of their potential for large-scale manufacturing using roll-to-roll processing allied to their use of earth abundant raw materials. Two main challenges exist for DSC devices to achieve this goal; uplifting device efficiency from the 12 to 14% currently achieved for laboratory-scale ‘hero’ cells and replacement of the widely-used liquid electrolytes which can limit device lifetimes. To increase device efficiency requires optimized dye injection and regeneration, most likely from multiple dyes while replacement of liquid electrolytes requires solid charge transporters (most likely hole transport materials – HTMs). While theoretical and experimental work have both been widely applied to different aspects of DSC research, these approaches are most effective when working in tandem. In this context, this perspective paper considers the key parameters which influence electron transfer processes in DSC devices using one or more dye molecules and how modelling and experimental approaches can work together to optimize electron injection and dye regeneration.