Cargando…
SpiLinC: Spiking Liquid-Ensemble Computing for Unsupervised Speech and Image Recognition
In this work, we propose a Spiking Neural Network (SNN) consisting of input neurons sparsely connected by plastic synapses to a randomly interlinked liquid, referred to as Liquid-SNN, for unsupervised speech and image recognition. We adapt the strength of the synapses interconnecting the input and l...
Autores principales: | Srinivasan, Gopalakrishnan, Panda, Priyadarshini, Roy, Kaushik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6116788/ https://www.ncbi.nlm.nih.gov/pubmed/30190670 http://dx.doi.org/10.3389/fnins.2018.00524 |
Ejemplares similares
-
Analysis of Liquid Ensembles for Enhancing the Performance and Accuracy of Liquid State Machines
por: Wijesinghe, Parami, et al.
Publicado: (2019) -
Training Deep Spiking Convolutional Neural Networks With STDP-Based Unsupervised Pre-training Followed by Supervised Fine-Tuning
por: Lee, Chankyu, et al.
Publicado: (2018) -
Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures
por: Lee, Chankyu, et al.
Publicado: (2020) -
Unsupervised speech recognition through spike-timing-dependent plasticity in a convolutional spiking neural network
por: Dong, Meng, et al.
Publicado: (2018) -
Unsupervised Learning in an Ensemble of Spiking Neural Networks Mediated by ITDP
por: Shim, Yoonsik, et al.
Publicado: (2016)