Cargando…
Stationary log-normal distribution of weights stems from spontaneous ordering in adaptive node networks
Experimental evidence recently indicated that neural networks can learn in a different manner than was previously assumed, using adaptive nodes instead of adaptive links. Consequently, links to a node undergo the same adaptation, resulting in cooperative nonlinear dynamics with oscillating effective...
Autores principales: | Uzan, Herut, Sardi, Shira, Goldental, Amir, Vardi, Roni, Kanter, Ido |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6117314/ https://www.ncbi.nlm.nih.gov/pubmed/30166579 http://dx.doi.org/10.1038/s41598-018-31523-1 |
Ejemplares similares
-
Adaptive nodes enrich nonlinear cooperative learning beyond traditional adaptation by links
por: Sardi, Shira, et al.
Publicado: (2018) -
Biological learning curves outperform existing ones in artificial intelligence algorithms
por: Uzan, Herut, et al.
Publicado: (2019) -
Oscillations in networks of networks stem from adaptive nodes with memory
por: Goldental, Amir, et al.
Publicado: (2017) -
Vitality of Neural Networks under Reoccurring Catastrophic Failures
por: Sardi, Shira, et al.
Publicado: (2016) -
Broadband macroscopic cortical oscillations emerge from intrinsic neuronal response failures
por: Goldental, Amir, et al.
Publicado: (2015)