Cargando…

Study on Near-Net Forming Technology for Stepped Shaft by Cross-Wedge Rolling Based on Variable Cone Angle Billets

Considering problems about concaves at the stepped shaft ends, this paper established the plastic flow kinetic theories about metal deforming during the cross-wedge rolling (CWR) process. By means of the DEFORM-3D finite element software and the point tracing method, the forming process of stepped s...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Sutao, Shu, Xuedao, Shu, Chang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6117707/
https://www.ncbi.nlm.nih.gov/pubmed/30044396
http://dx.doi.org/10.3390/ma11081278
_version_ 1783351806289510400
author Han, Sutao
Shu, Xuedao
Shu, Chang
author_facet Han, Sutao
Shu, Xuedao
Shu, Chang
author_sort Han, Sutao
collection PubMed
description Considering problems about concaves at the stepped shaft ends, this paper established the plastic flow kinetic theories about metal deforming during the cross-wedge rolling (CWR) process. By means of the DEFORM-3D finite element software and the point tracing method, the forming process of stepped shafts and the forming mechanism of concaves at shaft ends were studied. Based on the forming features of stepped shafts, rolling pieces were designed using variable cone angle billets. Single-factor tests were conducted to analyze the influence law of the shape parameters of billet with variable cone angle on end concaves, and rolling experiments were performed for verification. According to the results, during the rolling process of stepped shafts, concaves will come into being in stages, and the increasing tendency of its depth is due to the wave mode, the parameters of cone angle α, the first cone section length n. Furthermore, the total cone section length m has an increasingly weaker influence on the end concaves. Specifically, cone angle α has the most significant influence on the quality of shaft ends, which is about twice the influence of the total cone section length m. The concave depth will decrease at the beginning, and then increase with the increasing of the cone angle α and the first cone section length n, and it will decrease with the increasing of the total cone section length m. Finite element numerical analysis results are perfectly consistent with experimental results, with the error ratio being lower than 5%. The results provide a reliable theoretical basis for effectively disposing of end concave problems during CWR, rationally confirming the shape parameters of billets with a variable cone angle, improving the quality of stepped shaft ends, and realizing the near-net forming process of cross-wedge rolling without a stub bar.
format Online
Article
Text
id pubmed-6117707
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-61177072018-09-05 Study on Near-Net Forming Technology for Stepped Shaft by Cross-Wedge Rolling Based on Variable Cone Angle Billets Han, Sutao Shu, Xuedao Shu, Chang Materials (Basel) Article Considering problems about concaves at the stepped shaft ends, this paper established the plastic flow kinetic theories about metal deforming during the cross-wedge rolling (CWR) process. By means of the DEFORM-3D finite element software and the point tracing method, the forming process of stepped shafts and the forming mechanism of concaves at shaft ends were studied. Based on the forming features of stepped shafts, rolling pieces were designed using variable cone angle billets. Single-factor tests were conducted to analyze the influence law of the shape parameters of billet with variable cone angle on end concaves, and rolling experiments were performed for verification. According to the results, during the rolling process of stepped shafts, concaves will come into being in stages, and the increasing tendency of its depth is due to the wave mode, the parameters of cone angle α, the first cone section length n. Furthermore, the total cone section length m has an increasingly weaker influence on the end concaves. Specifically, cone angle α has the most significant influence on the quality of shaft ends, which is about twice the influence of the total cone section length m. The concave depth will decrease at the beginning, and then increase with the increasing of the cone angle α and the first cone section length n, and it will decrease with the increasing of the total cone section length m. Finite element numerical analysis results are perfectly consistent with experimental results, with the error ratio being lower than 5%. The results provide a reliable theoretical basis for effectively disposing of end concave problems during CWR, rationally confirming the shape parameters of billets with a variable cone angle, improving the quality of stepped shaft ends, and realizing the near-net forming process of cross-wedge rolling without a stub bar. MDPI 2018-07-25 /pmc/articles/PMC6117707/ /pubmed/30044396 http://dx.doi.org/10.3390/ma11081278 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Han, Sutao
Shu, Xuedao
Shu, Chang
Study on Near-Net Forming Technology for Stepped Shaft by Cross-Wedge Rolling Based on Variable Cone Angle Billets
title Study on Near-Net Forming Technology for Stepped Shaft by Cross-Wedge Rolling Based on Variable Cone Angle Billets
title_full Study on Near-Net Forming Technology for Stepped Shaft by Cross-Wedge Rolling Based on Variable Cone Angle Billets
title_fullStr Study on Near-Net Forming Technology for Stepped Shaft by Cross-Wedge Rolling Based on Variable Cone Angle Billets
title_full_unstemmed Study on Near-Net Forming Technology for Stepped Shaft by Cross-Wedge Rolling Based on Variable Cone Angle Billets
title_short Study on Near-Net Forming Technology for Stepped Shaft by Cross-Wedge Rolling Based on Variable Cone Angle Billets
title_sort study on near-net forming technology for stepped shaft by cross-wedge rolling based on variable cone angle billets
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6117707/
https://www.ncbi.nlm.nih.gov/pubmed/30044396
http://dx.doi.org/10.3390/ma11081278
work_keys_str_mv AT hansutao studyonnearnetformingtechnologyforsteppedshaftbycrosswedgerollingbasedonvariableconeanglebillets
AT shuxuedao studyonnearnetformingtechnologyforsteppedshaftbycrosswedgerollingbasedonvariableconeanglebillets
AT shuchang studyonnearnetformingtechnologyforsteppedshaftbycrosswedgerollingbasedonvariableconeanglebillets