Cargando…
Analysis of genome sequence and symbiotic ability of rhizobial strains isolated from seeds of common bean (Phaseolus vulgaris)
BACKGROUND: Rhizobia are alpha-proteobacteria commonly found in soil and root nodules of legumes. It was recently reported that nitrogen-fixing rhizobia also inhabit legume seeds. In this study, we examined whole-genome sequences of seven strains of rhizobia isolated from seeds of common bean (Phase...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6117902/ https://www.ncbi.nlm.nih.gov/pubmed/30165827 http://dx.doi.org/10.1186/s12864-018-5023-0 |
_version_ | 1783351834394492928 |
---|---|
author | Aguilar, Alejandro Mora, Yolanda Dávalos, Araceli Girard, Lourdes Mora, Jaime Peralta, Humberto |
author_facet | Aguilar, Alejandro Mora, Yolanda Dávalos, Araceli Girard, Lourdes Mora, Jaime Peralta, Humberto |
author_sort | Aguilar, Alejandro |
collection | PubMed |
description | BACKGROUND: Rhizobia are alpha-proteobacteria commonly found in soil and root nodules of legumes. It was recently reported that nitrogen-fixing rhizobia also inhabit legume seeds. In this study, we examined whole-genome sequences of seven strains of rhizobia isolated from seeds of common bean (Phaseolus vulgaris). RESULTS: Rhizobial strains included in this study belonged to three different species, including Rhizobium phaseoli, R. leguminosarum, and R. grahamii. Genome sequence analyses revealed that six of the strains formed three pairs of highly related strains. Both strains comprising a pair shared all but one plasmid. In two out of three pairs, one of the member strains was effective in nodulation and nitrogen fixation, whereas the other was ineffective. The genome of the ineffective strain in each pair lacked several genes responsible for symbiosis, including nod, nif, and fix genes, whereas that of the effective strain harbored the corresponding genes in clusters, suggesting that recombination events provoked gene loss in ineffective strains. Comparisons of genomic sequences between seed strains and nodule strains of the same species showed high conservation of chromosomal sequences and lower conservation of plasmid sequences. Approximately 70% of all genes were shared among the strains of each species. However, paralogs were more abundant in seed strains than in nodule strains. Functional analysis showed that seed strains were particularly enriched in genes involved in the transport and metabolism of amino acids and carbohydrates, biosynthesis of cofactors and in transposons and prophages. Genomes of seed strains harbored several intact prophages, one of which was inserted at exactly the same genomic position in three strains of R. phaseoli and R. leguminosarum. The R. grahamii strain carried a prophage similar to a gene transfer agent (GTA); this represents the first GTA reported for this genus. CONCLUSIONS: Seeds represent a niche for bacteria; their access by rhizobia possibly triggered the infection of phages, recombination, loss or gain of plasmids, and loss of symbiosis genes. This process probably represents ongoing evolution that will eventually convert these strains into obligate endophytes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-018-5023-0) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6117902 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-61179022018-09-05 Analysis of genome sequence and symbiotic ability of rhizobial strains isolated from seeds of common bean (Phaseolus vulgaris) Aguilar, Alejandro Mora, Yolanda Dávalos, Araceli Girard, Lourdes Mora, Jaime Peralta, Humberto BMC Genomics Research Article BACKGROUND: Rhizobia are alpha-proteobacteria commonly found in soil and root nodules of legumes. It was recently reported that nitrogen-fixing rhizobia also inhabit legume seeds. In this study, we examined whole-genome sequences of seven strains of rhizobia isolated from seeds of common bean (Phaseolus vulgaris). RESULTS: Rhizobial strains included in this study belonged to three different species, including Rhizobium phaseoli, R. leguminosarum, and R. grahamii. Genome sequence analyses revealed that six of the strains formed three pairs of highly related strains. Both strains comprising a pair shared all but one plasmid. In two out of three pairs, one of the member strains was effective in nodulation and nitrogen fixation, whereas the other was ineffective. The genome of the ineffective strain in each pair lacked several genes responsible for symbiosis, including nod, nif, and fix genes, whereas that of the effective strain harbored the corresponding genes in clusters, suggesting that recombination events provoked gene loss in ineffective strains. Comparisons of genomic sequences between seed strains and nodule strains of the same species showed high conservation of chromosomal sequences and lower conservation of plasmid sequences. Approximately 70% of all genes were shared among the strains of each species. However, paralogs were more abundant in seed strains than in nodule strains. Functional analysis showed that seed strains were particularly enriched in genes involved in the transport and metabolism of amino acids and carbohydrates, biosynthesis of cofactors and in transposons and prophages. Genomes of seed strains harbored several intact prophages, one of which was inserted at exactly the same genomic position in three strains of R. phaseoli and R. leguminosarum. The R. grahamii strain carried a prophage similar to a gene transfer agent (GTA); this represents the first GTA reported for this genus. CONCLUSIONS: Seeds represent a niche for bacteria; their access by rhizobia possibly triggered the infection of phages, recombination, loss or gain of plasmids, and loss of symbiosis genes. This process probably represents ongoing evolution that will eventually convert these strains into obligate endophytes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12864-018-5023-0) contains supplementary material, which is available to authorized users. BioMed Central 2018-08-30 /pmc/articles/PMC6117902/ /pubmed/30165827 http://dx.doi.org/10.1186/s12864-018-5023-0 Text en © The Author(s). 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Aguilar, Alejandro Mora, Yolanda Dávalos, Araceli Girard, Lourdes Mora, Jaime Peralta, Humberto Analysis of genome sequence and symbiotic ability of rhizobial strains isolated from seeds of common bean (Phaseolus vulgaris) |
title | Analysis of genome sequence and symbiotic ability of rhizobial strains isolated from seeds of common bean (Phaseolus vulgaris) |
title_full | Analysis of genome sequence and symbiotic ability of rhizobial strains isolated from seeds of common bean (Phaseolus vulgaris) |
title_fullStr | Analysis of genome sequence and symbiotic ability of rhizobial strains isolated from seeds of common bean (Phaseolus vulgaris) |
title_full_unstemmed | Analysis of genome sequence and symbiotic ability of rhizobial strains isolated from seeds of common bean (Phaseolus vulgaris) |
title_short | Analysis of genome sequence and symbiotic ability of rhizobial strains isolated from seeds of common bean (Phaseolus vulgaris) |
title_sort | analysis of genome sequence and symbiotic ability of rhizobial strains isolated from seeds of common bean (phaseolus vulgaris) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6117902/ https://www.ncbi.nlm.nih.gov/pubmed/30165827 http://dx.doi.org/10.1186/s12864-018-5023-0 |
work_keys_str_mv | AT aguilaralejandro analysisofgenomesequenceandsymbioticabilityofrhizobialstrainsisolatedfromseedsofcommonbeanphaseolusvulgaris AT morayolanda analysisofgenomesequenceandsymbioticabilityofrhizobialstrainsisolatedfromseedsofcommonbeanphaseolusvulgaris AT davalosaraceli analysisofgenomesequenceandsymbioticabilityofrhizobialstrainsisolatedfromseedsofcommonbeanphaseolusvulgaris AT girardlourdes analysisofgenomesequenceandsymbioticabilityofrhizobialstrainsisolatedfromseedsofcommonbeanphaseolusvulgaris AT morajaime analysisofgenomesequenceandsymbioticabilityofrhizobialstrainsisolatedfromseedsofcommonbeanphaseolusvulgaris AT peraltahumberto analysisofgenomesequenceandsymbioticabilityofrhizobialstrainsisolatedfromseedsofcommonbeanphaseolusvulgaris |