Cargando…

Adjustable photoacoustic tomography probe improves light delivery and image quality

One cause for suboptimal photoacoustic tomography (PAT) penetration depth is attenuation of incident light by soft tissue. To better understand this problem, we investigated the effects of illumination fiber optic bundle geometry on PAT penetration depth and signal-to-noise ratio. An adjustable, mot...

Descripción completa

Detalles Bibliográficos
Autores principales: Sangha, Gurneet S., Hale, Nicholas J., Goergen, Craig J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6118042/
https://www.ncbi.nlm.nih.gov/pubmed/30175045
http://dx.doi.org/10.1016/j.pacs.2018.08.002
Descripción
Sumario:One cause for suboptimal photoacoustic tomography (PAT) penetration depth is attenuation of incident light by soft tissue. To better understand this problem, we investigated the effects of illumination fiber optic bundle geometry on PAT penetration depth and signal-to-noise ratio. An adjustable, motorized PAT probe was used to reduce probe-skin reflection artifacts and improve light distribution in the image acquisition plane by tuning fiber orientation. We validated our motorized PAT probe through Monte Carlo simulations and ex vivo imaging of a tissue mimicking phantom, and in vivo imaging of murine periaortic fat. Overall, our ex vivo results showed a several millimeter improvement in penetration depth and in vivo results showed a >62% increase in lipid signal-to-noise ratio. Our PAT probe also utilized a 7-μm aluminum filter to block in vivo probe-skin reflection artifacts. Together, these findings showed the importance of optimizing illumination geometry to enhance PAT image quality.