Cargando…
SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks
A vast majority of computation in the brain is performed by spiking neural networks. Despite the ubiquity of such spiking, we currently lack an understanding of how biological spiking neural circuits learn and compute in vivo, as well as how we can instantiate such capabilities in artificial spiking...
Autores principales: | Zenke, Friedemann, Ganguli, Surya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6118408/ https://www.ncbi.nlm.nih.gov/pubmed/29652587 http://dx.doi.org/10.1162/neco_a_01086 |
Ejemplares similares
-
Supervised Learning With First-to-Spike Decoding in Multilayer Spiking Neural Networks
por: Gardner, Brian, et al.
Publicado: (2021) -
Supervised Learning Algorithm for Multilayer Spiking Neural Networks with Long-Term Memory Spike Response Model
por: Lin, Xianghong, et al.
Publicado: (2021) -
An Efficient Supervised Training Algorithm for Multilayer Spiking Neural Networks
por: Xie, Xiurui, et al.
Publicado: (2016) -
Supervised learning in spiking neural networks with FORCE training
por: Nicola, Wilten, et al.
Publicado: (2017) -
Limits to high-speed simulations of spiking neural networks using general-purpose computers
por: Zenke, Friedemann, et al.
Publicado: (2014)