Cargando…
Heckman imputation models for binary or continuous MNAR outcomes and MAR predictors
BACKGROUND: Multiple imputation by chained equations (MICE) requires specifying a suitable conditional imputation model for each incomplete variable and then iteratively imputes the missing values. In the presence of missing not at random (MNAR) outcomes, valid statistical inference often requires j...
Autores principales: | Galimard, Jacques-Emmanuel, Chevret, Sylvie, Curis, Emmanuel, Resche-Rigon, Matthieu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119269/ https://www.ncbi.nlm.nih.gov/pubmed/30170561 http://dx.doi.org/10.1186/s12874-018-0547-1 |
Ejemplares similares
-
Comparison of Different LGM-Based Methods with MAR and MNAR Dropout Data
por: Li, Meijuan, et al.
Publicado: (2017) -
The use of multiple imputation (MI) in cluster randomised trials with suspected missing not at random (MNAR) outcome
por: Playle, Rebecca, et al.
Publicado: (2015) -
Simple imputation methods were inadequate for missing not at random (MNAR) quality of life data
por: Fielding, Shona, et al.
Publicado: (2008) -
Evaluating mortality in intensive care units: contribution of competing risks analyses
por: Resche-Rigon, Matthieu, et al.
Publicado: (2006) -
Evaluation of the Propensity score methods for estimating marginal odds ratios in case of small sample size
por: Pirracchio, Romain, et al.
Publicado: (2012)