Cargando…

Comparative study on the independent and combined effects of omega-3 and vitamin B12 on phospholipids and phospholipase A2 as phospholipid hydrolyzing enzymes in PPA-treated rats as a model for autistic traits

BACKGROUND: Abnormal phospholipid metabolism is a major component of many neurodevelopmental disorders including autism. Oral administration of propionic acid (PPA) can produce behavioral abnormalities and biochemical features in rodents similar to those observed in autism and can thus be used as a...

Descripción completa

Detalles Bibliográficos
Autores principales: Alfawaz, Hanan, Bhat, Ramesa Shafi, Al-Mutairi, Manar, Alnakhli, Osima M., Al-Dbass, Abeer, AlOnazi, Mona, Al-Mrshoud, Majidh, Hasan, Iman H., El-Ansary, Afaf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119280/
https://www.ncbi.nlm.nih.gov/pubmed/30170600
http://dx.doi.org/10.1186/s12944-018-0850-1
Descripción
Sumario:BACKGROUND: Abnormal phospholipid metabolism is a major component of many neurodevelopmental disorders including autism. Oral administration of propionic acid (PPA) can produce behavioral abnormalities and biochemical features in rodents similar to those observed in autism and can thus be used as a model to understand impaired brain fatty acid metabolism in autism. METHODS: The present study was designed to understand alterations in phospholipid metabolism in the brain of a rodent model of autism and to explore omega-3 and vitamin B12 as remedies. Five groups of rats were selected: Group 1 was the control. Group 2 was the rodent model of autism treated with a neurotoxic dose of PPA. Group 3 was given vitamin B12 cobalamin (16.7 mg/kg/day) for 30 days after PPA treatment. Group 4 was given pharmaceutical grade Omega-3 (200 mg cholesterol free-DHA/kg body weight/day), a product of Madre lab, Germany, for 30 days after PPA treatment for 3 days. Group 5 was given a combined dose of ω-3 + Vitamin B12 for the same duration post-PPA treatment. Phospholipid levels and Phospholipase A2 were measured in the brain homogenates of all the groups. ELISA and western blotting were used to detect the cPLA2 protein level. RESULTS: A significant decrease in phospholipid levels and a significant increase in cPLA2 were found in brain tissue of PPA-treated rats; however, both ω-3 and vitamin B12 were efficient in ameliorating the neurotoxic effect of PPA. CONCLUSION: Both ω-3 and vitamin B12 may play a role in ameliorating impaired phospholipid metabolism in autism; however, proper clinical trials are needed.