Cargando…

SNOMED CT standard ontology based on the ontology for general medical science

BACKGROUND: Systematized Nomenclature of Medicine—Clinical Terms (SNOMED CT, hereafter abbreviated SCT) is a comprehensive medical terminology used for standardizing the storage, retrieval, and exchange of electronic health data. Some efforts have been made to capture the contents of SCT as Web Onto...

Descripción completa

Detalles Bibliográficos
Autores principales: El-Sappagh, Shaker, Franda, Francesco, Ali, Farman, Kwak, Kyung-Sup
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119323/
https://www.ncbi.nlm.nih.gov/pubmed/30170591
http://dx.doi.org/10.1186/s12911-018-0651-5
Descripción
Sumario:BACKGROUND: Systematized Nomenclature of Medicine—Clinical Terms (SNOMED CT, hereafter abbreviated SCT) is a comprehensive medical terminology used for standardizing the storage, retrieval, and exchange of electronic health data. Some efforts have been made to capture the contents of SCT as Web Ontology Language (OWL), but these efforts have been hampered by the size and complexity of SCT. METHOD: Our proposal here is to develop an upper-level ontology and to use it as the basis for defining the terms in SCT in a way that will support quality assurance of SCT, for example, by allowing consistency checks of definitions and the identification and elimination of redundancies in the SCT vocabulary. Our proposed upper-level SCT ontology (SCTO) is based on the Ontology for General Medical Science (OGMS). RESULTS: The SCTO is implemented in OWL 2, to support automatic inference and consistency checking. The approach will allow integration of SCT data with data annotated using Open Biomedical Ontologies (OBO) Foundry ontologies, since the use of OGMS will ensure consistency with the Basic Formal Ontology, which is the top-level ontology of the OBO Foundry. Currently, the SCTO contains 304 classes, 28 properties, 2400 axioms, and 1555 annotations. It is publicly available through the bioportal at http://bioportal.bioontology.org/ontologies/SCTO/. CONCLUSION: The resulting ontology can enhance the semantics of clinical decision support systems and semantic interoperability among distributed electronic health records. In addition, the populated ontology can be used for the automation of mobile health applications.