Cargando…
Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables
Random forest and similar Machine Learning techniques are already used to generate spatial predictions, but spatial location of points (geography) is often ignored in the modeling process. Spatial auto-correlation, especially if still existent in the cross-validation residuals, indicates that the pr...
Autores principales: | Hengl, Tomislav, Nussbaum, Madlene, Wright, Marvin N., Heuvelink, Gerard B.M., Gräler, Benedikt |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119462/ https://www.ncbi.nlm.nih.gov/pubmed/30186691 http://dx.doi.org/10.7717/peerj.5518 |
Ejemplares similares
-
Forest tree species distribution for Europe 2000–2020: mapping potential and realized distributions using spatiotemporal machine learning
por: Bonannella, Carmelo, et al.
Publicado: (2022) -
Biomes of the world under climate change scenarios: increasing aridity and higher temperatures lead to significant shifts in natural vegetation
por: Bonannella, Carmelo, et al.
Publicado: (2023) -
Global mapping of potential natural vegetation: an assessment of machine learning algorithms for estimating land potential
por: Hengl, Tomislav, et al.
Publicado: (2018) -
Wild bees of Grand Staircase-Escalante National Monument: richness, abundance, and spatio-temporal beta-diversity
por: Carril, Olivia Messinger, et al.
Publicado: (2018) -
Using opportunistic sightings to infer differential spatio-temporal use of western Mediterranean waters by the fin whale
por: Torreblanca, Estefanía, et al.
Publicado: (2019)