Cargando…

Effect of Alloying Elements Gradient on Solid-State Diffusion Bonding between Aerospace Aluminum Alloys

Three different bonding couples assembled by two commonly used aerospace aluminum alloys were bonded within the temperature range of 460–520 °C under 6 MPa for 60 min in vacuum atmosphere. The interface microstructure and alloying elements distribution of the bonded joints were determined by scannin...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Fan, Zhou, Wenlong, Han, Yujie, Fu, Xuesong, Xu, Yanjin, Hou, Hongliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6119970/
https://www.ncbi.nlm.nih.gov/pubmed/30111760
http://dx.doi.org/10.3390/ma11081446
Descripción
Sumario:Three different bonding couples assembled by two commonly used aerospace aluminum alloys were bonded within the temperature range of 460–520 °C under 6 MPa for 60 min in vacuum atmosphere. The interface microstructure and alloying elements distribution of the bonded joints were determined by scanning electron microscope (SEM) and Energy Dispersive Spectroscope (EDS); the bond strength was evaluated by tensile-shear strength test. The results show the bond quality improved effectively as the bonding temperature increased. Compared with the 1420-1420 and 7B04-7B04 bonding couples, the 1420-7B04 couples obtained better interface integrity and higher bond strength, the highest shear strength for 1420-7B04 couple can be as high as 188 MPa when bonded at 520 °C. Special attention was focused on the 1420-7B04 couple, the diffusion coefficient of Mg at the original interface under different temperatures were investigated, the results show the diffusion coefficient increased obviously as the bonding temperature increased. A diffusion affected zone (DAZ) without continuous intermetallic phases formed due to the diffusion of alloying elements across the bonding interface. The combined action of temperature and alloying elements gradient resulted in the increase of alloying elements diffusion fluxes, which in turn promote the bonding quality through the accelerated shrinkage of interfacial voids.