Cargando…

Mechanical Characteristics of Hybrid Composites with ±45° Glass and 0°/90° Stainless Steel Fibers

Lack of energy dissipation is one of the shortcomings of conventional glass fiber reinforced composites. The addition of steel fibers to the conventional FRP composite to create a hybrid composite has been recently investigated as an option to address this limitation. The current literature is limit...

Descripción completa

Detalles Bibliográficos
Autores principales: O′Brien, Caitlin, Zaghi, Arash E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6120008/
https://www.ncbi.nlm.nih.gov/pubmed/30081577
http://dx.doi.org/10.3390/ma11081355
_version_ 1783352183704518656
author O′Brien, Caitlin
Zaghi, Arash E.
author_facet O′Brien, Caitlin
Zaghi, Arash E.
author_sort O′Brien, Caitlin
collection PubMed
description Lack of energy dissipation is one of the shortcomings of conventional glass fiber reinforced composites. The addition of steel fibers to the conventional FRP composite to create a hybrid composite has been recently investigated as an option to address this limitation. The current literature is limited to composites reinforced with metal and non-metal fibers of the same alignment. In this study, hybrid and nonhybrid FRP composites of different layups, fiber content, and weave type were manufactured and subjected to hysteretic tensile loads. Woven glass fabrics in ±45° orientation were hybridized with unidirectional stainless steel fabrics in 0° and 90° orientations. This put the glass and steel layers in in-plane shear and normal stresses, respectively. The nonlinear stress–strain relationship, residual plastic strains, energy dissipation capability, and failure mechanisms of hybrid and nonhybrid composite type were compared. The hybrid composites presented improved energy dissipation, tensile strength, and stiffness when compared to nonhybrid ones. The applicability of an existing constitutive model that was originally developed for in-plane shear of conventional composites was investigated and refinements were proposed to present the hysteretic stress–strain relationship after addition of steel fibers. The refined model captured the increased plastic strain values and energy dissipation because of stainless steel fibers in the hybrid composite samples. An Armstrong–Frederick plasticity model was implemented to model the stress–strain relationship of the stainless steel composite samples.
format Online
Article
Text
id pubmed-6120008
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-61200082018-09-05 Mechanical Characteristics of Hybrid Composites with ±45° Glass and 0°/90° Stainless Steel Fibers O′Brien, Caitlin Zaghi, Arash E. Materials (Basel) Article Lack of energy dissipation is one of the shortcomings of conventional glass fiber reinforced composites. The addition of steel fibers to the conventional FRP composite to create a hybrid composite has been recently investigated as an option to address this limitation. The current literature is limited to composites reinforced with metal and non-metal fibers of the same alignment. In this study, hybrid and nonhybrid FRP composites of different layups, fiber content, and weave type were manufactured and subjected to hysteretic tensile loads. Woven glass fabrics in ±45° orientation were hybridized with unidirectional stainless steel fabrics in 0° and 90° orientations. This put the glass and steel layers in in-plane shear and normal stresses, respectively. The nonlinear stress–strain relationship, residual plastic strains, energy dissipation capability, and failure mechanisms of hybrid and nonhybrid composite type were compared. The hybrid composites presented improved energy dissipation, tensile strength, and stiffness when compared to nonhybrid ones. The applicability of an existing constitutive model that was originally developed for in-plane shear of conventional composites was investigated and refinements were proposed to present the hysteretic stress–strain relationship after addition of steel fibers. The refined model captured the increased plastic strain values and energy dissipation because of stainless steel fibers in the hybrid composite samples. An Armstrong–Frederick plasticity model was implemented to model the stress–strain relationship of the stainless steel composite samples. MDPI 2018-08-04 /pmc/articles/PMC6120008/ /pubmed/30081577 http://dx.doi.org/10.3390/ma11081355 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
O′Brien, Caitlin
Zaghi, Arash E.
Mechanical Characteristics of Hybrid Composites with ±45° Glass and 0°/90° Stainless Steel Fibers
title Mechanical Characteristics of Hybrid Composites with ±45° Glass and 0°/90° Stainless Steel Fibers
title_full Mechanical Characteristics of Hybrid Composites with ±45° Glass and 0°/90° Stainless Steel Fibers
title_fullStr Mechanical Characteristics of Hybrid Composites with ±45° Glass and 0°/90° Stainless Steel Fibers
title_full_unstemmed Mechanical Characteristics of Hybrid Composites with ±45° Glass and 0°/90° Stainless Steel Fibers
title_short Mechanical Characteristics of Hybrid Composites with ±45° Glass and 0°/90° Stainless Steel Fibers
title_sort mechanical characteristics of hybrid composites with ±45° glass and 0°/90° stainless steel fibers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6120008/
https://www.ncbi.nlm.nih.gov/pubmed/30081577
http://dx.doi.org/10.3390/ma11081355
work_keys_str_mv AT obriencaitlin mechanicalcharacteristicsofhybridcompositeswith45glassand090stainlesssteelfibers
AT zaghiarashe mechanicalcharacteristicsofhybridcompositeswith45glassand090stainlesssteelfibers