Cargando…
Biocompatible/Biodegradable Electrowetting on Dielectric Microfluidic Chips with Fluorinated CTA/PLGA
One of the major hurdles in the development of biocompatible/biodegradable EWOD (Electrowetting-on-dielectric) devices is the biocompatibility of the dielectric and hydrophobic layers. In this study, we address this problem by using reactive ion etching (RIE) to prepare a super-hydrophobic film comb...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6120052/ https://www.ncbi.nlm.nih.gov/pubmed/30071631 http://dx.doi.org/10.3390/ma11081332 |
Sumario: | One of the major hurdles in the development of biocompatible/biodegradable EWOD (Electrowetting-on-dielectric) devices is the biocompatibility of the dielectric and hydrophobic layers. In this study, we address this problem by using reactive ion etching (RIE) to prepare a super-hydrophobic film combining fluorinated cellulose triacetate (CTA) and poly (lactic-co-glycolic acid) (PLGA). The contact angle (CA) of water droplets on the proposed material is about 160°. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) characterizations indicate that a slight increase in the surface roughness and the formation of CF(x) (C-F or CF(2)) bonds are responsible for the super-hydrophobic nature of the film. Alternating Current (AC) static electrowetting and droplet transportation experiments evidence that contact angle hysteresis and contact line pinning are greatly reduced by impregnating the CTA/PLGA film with silicon oil. Therefore, this improved film could provide a biocompatible alternative to the typical Teflon(®) or Cytop(®) films as a dielectric and hydrophobic layer. |
---|