Cargando…

Comparison of structures among Saccharomyces cerevisiae Grxs proteins

Glutaredoxins (Grxs) comprise a group of glutathione (GSH)-dependent oxidoreductase enzymes that respond to oxidative stress and sustain redox homeostasis. Saccharomyces cerevisiae Grx has a similar interaction patterns through its residues between the residues and the environment. The glutaredoxin...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdalla, Mohnad, Eltayb, Wafa Ali, Yousif, Aadil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6120076/
https://www.ncbi.nlm.nih.gov/pubmed/30186535
http://dx.doi.org/10.1186/s41021-018-0104-5
Descripción
Sumario:Glutaredoxins (Grxs) comprise a group of glutathione (GSH)-dependent oxidoreductase enzymes that respond to oxidative stress and sustain redox homeostasis. Saccharomyces cerevisiae Grx has a similar interaction patterns through its residues between the residues and the environment. The glutaredoxin domain covers 100% of the entire mature Grx1 and Grx8, while the glutaredoxin domain covers ~ 52% of the entire mature Grx6 and Grx7, which have approximately 74 additional amino acids in their N-terminal regions, whereas Grx3 and Grx4 have two functional domains: glutaredoxin and thioredoxin. We have presented the prediction of disordered regions within these protein sequences. Multiple sequence alignment combined with a phylogenetic tree enabled us to specify the key residues contributing to the differences between Saccharomyces cerevisiae Grxs and the proportion symmetry.