Cargando…

Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy

In order to overcome intercellular variability and thereby effectively assess signal propagation in biological networks it is imperative to simultaneously quantify multiple biological observables in single living cells. While fluorescent biosensors have been the tool of choice to monitor the dynamic...

Descripción completa

Detalles Bibliográficos
Autores principales: Corbat, Agustin A., Schuermann, Klaus C., Liguzinski, Piotr, Radon, Yvonne, Bastiaens, Philippe I.H., Verveer, Peter J., Grecco, Hernán E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6120609/
https://www.ncbi.nlm.nih.gov/pubmed/30176560
http://dx.doi.org/10.1016/j.redox.2018.07.023
_version_ 1783352307547635712
author Corbat, Agustin A.
Schuermann, Klaus C.
Liguzinski, Piotr
Radon, Yvonne
Bastiaens, Philippe I.H.
Verveer, Peter J.
Grecco, Hernán E.
author_facet Corbat, Agustin A.
Schuermann, Klaus C.
Liguzinski, Piotr
Radon, Yvonne
Bastiaens, Philippe I.H.
Verveer, Peter J.
Grecco, Hernán E.
author_sort Corbat, Agustin A.
collection PubMed
description In order to overcome intercellular variability and thereby effectively assess signal propagation in biological networks it is imperative to simultaneously quantify multiple biological observables in single living cells. While fluorescent biosensors have been the tool of choice to monitor the dynamics of protein interaction and enzymatic activity, co-measuring more than two of them has proven challenging. In this work, we designed three spectrally separated anisotropy-based Förster Resonant Energy Transfer (FRET) biosensors to overcome this difficulty. We demonstrate this principle by monitoring the activation of extrinsic, intrinsic and effector caspases upon apoptotic stimulus. Together with modelling and simulations we show that time of maximum activity for each caspase can be derived from the anisotropy of the corresponding biosensor. Such measurements correlate relative activation times and refine existing models of biological signalling networks, providing valuable insight into signal propagation.
format Online
Article
Text
id pubmed-6120609
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-61206092018-09-04 Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy Corbat, Agustin A. Schuermann, Klaus C. Liguzinski, Piotr Radon, Yvonne Bastiaens, Philippe I.H. Verveer, Peter J. Grecco, Hernán E. Redox Biol Research Paper In order to overcome intercellular variability and thereby effectively assess signal propagation in biological networks it is imperative to simultaneously quantify multiple biological observables in single living cells. While fluorescent biosensors have been the tool of choice to monitor the dynamics of protein interaction and enzymatic activity, co-measuring more than two of them has proven challenging. In this work, we designed three spectrally separated anisotropy-based Förster Resonant Energy Transfer (FRET) biosensors to overcome this difficulty. We demonstrate this principle by monitoring the activation of extrinsic, intrinsic and effector caspases upon apoptotic stimulus. Together with modelling and simulations we show that time of maximum activity for each caspase can be derived from the anisotropy of the corresponding biosensor. Such measurements correlate relative activation times and refine existing models of biological signalling networks, providing valuable insight into signal propagation. Elsevier 2018-08-09 /pmc/articles/PMC6120609/ /pubmed/30176560 http://dx.doi.org/10.1016/j.redox.2018.07.023 Text en © 2018 Published by Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Paper
Corbat, Agustin A.
Schuermann, Klaus C.
Liguzinski, Piotr
Radon, Yvonne
Bastiaens, Philippe I.H.
Verveer, Peter J.
Grecco, Hernán E.
Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
title Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
title_full Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
title_fullStr Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
title_full_unstemmed Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
title_short Co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
title_sort co-imaging extrinsic, intrinsic and effector caspase activity by fluorescence anisotropy microscopy
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6120609/
https://www.ncbi.nlm.nih.gov/pubmed/30176560
http://dx.doi.org/10.1016/j.redox.2018.07.023
work_keys_str_mv AT corbatagustina coimagingextrinsicintrinsicandeffectorcaspaseactivitybyfluorescenceanisotropymicroscopy
AT schuermannklausc coimagingextrinsicintrinsicandeffectorcaspaseactivitybyfluorescenceanisotropymicroscopy
AT liguzinskipiotr coimagingextrinsicintrinsicandeffectorcaspaseactivitybyfluorescenceanisotropymicroscopy
AT radonyvonne coimagingextrinsicintrinsicandeffectorcaspaseactivitybyfluorescenceanisotropymicroscopy
AT bastiaensphilippeih coimagingextrinsicintrinsicandeffectorcaspaseactivitybyfluorescenceanisotropymicroscopy
AT verveerpeterj coimagingextrinsicintrinsicandeffectorcaspaseactivitybyfluorescenceanisotropymicroscopy
AT greccohernane coimagingextrinsicintrinsicandeffectorcaspaseactivitybyfluorescenceanisotropymicroscopy