Cargando…
Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype
RNA-based, multi-gene molecular assays are available and widely used for patients with ER-positive/HER2-negative breast cancers. However, RNA-based genomic tests can be costly and are not available in many countries. Methods for inferring molecular subtype from histologic images may identify patient...
Autores principales: | Couture, Heather D., Williams, Lindsay A., Geradts, Joseph, Nyante, Sarah J., Butler, Ebonee N., Marron, J. S., Perou, Charles M., Troester, Melissa A., Niethammer, Marc |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6120869/ https://www.ncbi.nlm.nih.gov/pubmed/30182055 http://dx.doi.org/10.1038/s41523-018-0079-1 |
Ejemplares similares
-
Breast cancer subtyping by immunohistochemistry and histological grade outperforms breast cancer intrinsic subtypes in predicting neoadjuvant chemotherapy response
por: Lips, E. H., et al.
Publicado: (2013) -
Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes
por: Prat, Aleix, et al.
Publicado: (2013) -
Predicting early breast cancer recurrence from histopathological images in the Carolina Breast Cancer Study
por: Shi, Yifeng, et al.
Publicado: (2023) -
TP53 protein levels, RNA-based pathway assessment, and race among invasive breast cancer cases
por: Williams, Lindsay A., et al.
Publicado: (2018) -
Challenges in studying the etiology of breast cancer subtypes
por: Troester, Melissa A, et al.
Publicado: (2009)