Cargando…

Promising post-consumer PET-derived activated carbon electrode material for non-enzymatic electrochemical determination of carbofuran hydrolysate

In this work, activated carbon (AC) materials, prepared from polyethylene terephthalate (PET) waste bottles were used as the sensing platform for the indirect detection of carbofuran. The morphology and surface properties of the PET-derived AC (PET-AC) were characterized by N(2) adsorption/desorptio...

Descripción completa

Detalles Bibliográficos
Autores principales: Ayyalusamy, Sureshkumar, Mishra, Susmita, Suryanarayanan, Vembu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6120898/
https://www.ncbi.nlm.nih.gov/pubmed/30177713
http://dx.doi.org/10.1038/s41598-018-31627-8
Descripción
Sumario:In this work, activated carbon (AC) materials, prepared from polyethylene terephthalate (PET) waste bottles were used as the sensing platform for the indirect detection of carbofuran. The morphology and surface properties of the PET-derived AC (PET-AC) were characterized by N(2) adsorption/desorption isotherm, X-ray diffraction (XRD), field-emission scanning/transmission electron microscopy (FE-SEM/TEM) and Raman spectroscopy. The electrochemical activity of the PET-AC modified glassy carbon electrode (GCE) (PET-AC/GCE) was measured by cyclic voltammetry and amperometry. The enhanced surface area and desirable porosities of PET-AC are attributed for the superior electrocatalytic activity on the detection of carbofuran phenol, where, the proposed sensor shows low detection limit (0.03 µM) and remarkable sensitivity (0.11 µA µM(−1) cm(−2)). The PET-AC/GCE holds high selectivity towards potentially interfering species. It also provides desirable stability, repeatability and reproducibility on detection of carbofuran phenol. Furthermore, the proposed sensor is utilized for the detection of carbofuran phenol in real sample applications. The above mentioned unique properties and desirable electrochemical performances suggest that the PET-derived AC is the most suitable carbonaceous materials for cost-effective and non-enzymatic electrochemical sensor.