Cargando…
Predicting the evolution of Escherichia coli by a data-driven approach
A tantalizing question in evolutionary biology is whether evolution can be predicted from past experiences. To address this question, we created a coherent compendium of more than 15,000 mutation events for the bacterium Escherichia coli under 178 distinct environmental settings. Compendium analysis...
Autores principales: | Wang, Xiaokang, Zorraquino, Violeta, Kim, Minseung, Tsoukalas, Athanasios, Tagkopoulos, Ilias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6120903/ https://www.ncbi.nlm.nih.gov/pubmed/30177705 http://dx.doi.org/10.1038/s41467-018-05807-z |
Ejemplares similares
-
Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli
por: Kim, Minseung, et al.
Publicado: (2016) -
Microbial Forensics: Predicting Phenotypic Characteristics and Environmental Conditions from Large-Scale Gene Expression Profiles
por: Kim, Minseung, et al.
Publicado: (2015) -
Understanding the Formation and Mechanism of Anticipatory Responses in Escherichia coli
por: Rai, Navneet, et al.
Publicado: (2022) -
From Data to Optimal Decision Making: A Data-Driven, Probabilistic Machine Learning Approach to Decision Support for Patients With Sepsis
por: Tsoukalas, Athanasios, et al.
Publicado: (2015) -
An integrative, multi-scale, genome-wide model reveals the phenotypic landscape of
Escherichia coli
por: Carrera, Javier, et al.
Publicado: (2014)