Cargando…
Task-Evoked Dynamic Network Analysis Through Hidden Markov Modeling
Complex thought and behavior arise through dynamic recruitment of large-scale brain networks. The signatures of this process may be observable in electrophysiological data; yet robust modeling of rapidly changing functional network structure on rapid cognitive timescales remains a considerable chall...
Autores principales: | Quinn, Andrew J., Vidaurre, Diego, Abeysuriya, Romesh, Becker, Robert, Nobre, Anna C., Woolrich, Mark W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6121015/ https://www.ncbi.nlm.nih.gov/pubmed/30210284 http://dx.doi.org/10.3389/fnins.2018.00603 |
Ejemplares similares
-
Discovering dynamic brain networks from big data in rest and task
por: Vidaurre, Diego, et al.
Publicado: (2018) -
Dissecting unsupervised learning through hidden Markov modeling in electrophysiological data
por: Masaracchia, Laura, et al.
Publicado: (2023) -
Dynamic analysis on simultaneous iEEG-MEG data via hidden Markov model
por: Zhang, Siqi, et al.
Publicado: (2021) -
Reconfiguration of Brain Network Dynamics in Autism Spectrum Disorder Based on Hidden Markov Model
por: Lin, Pingting, et al.
Publicado: (2022) -
Discovering the neuronal dynamics in major depressive disorder using Hidden Markov Model
por: Jiang, Wenhao, et al.
Publicado: (2023)