Cargando…
miRNA-34c Overexpression Causes Dendritic Loss and Memory Decline
Microribonucleic acids (miRNAs) play a pivotal role in numerous aspects of the nervous system and are increasingly recognized as key regulators in neurodegenerative diseases. This study hypothesized that miR-34c, a miRNA expressed in mammalian hippocampi whose expression level can alter the hippocam...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6121231/ https://www.ncbi.nlm.nih.gov/pubmed/30096777 http://dx.doi.org/10.3390/ijms19082323 |
_version_ | 1783352419105636352 |
---|---|
author | Kao, Yu-Chia Wang, I-Fang Tsai, Kuen-Jer |
author_facet | Kao, Yu-Chia Wang, I-Fang Tsai, Kuen-Jer |
author_sort | Kao, Yu-Chia |
collection | PubMed |
description | Microribonucleic acids (miRNAs) play a pivotal role in numerous aspects of the nervous system and are increasingly recognized as key regulators in neurodegenerative diseases. This study hypothesized that miR-34c, a miRNA expressed in mammalian hippocampi whose expression level can alter the hippocampal dendritic spine density, could induce memory impairment akin to that of patients with Alzheimer’s disease (AD) in mice. In this study, we showed that miR-34c overexpression in hippocampal neurons negatively regulated dendritic length and spine density. Hippocampal neurons transfected with miR-34c had shorter dendrites on average and fewer filopodia and spines than those not transfected with miR-34c (control mice). Because dendrites and synapses are key sites for signal transduction and fundamental structures for memory formation and storage, disrupted dendrites can contribute to AD. Therefore, we supposed that miR-34c, through its effects on dendritic spine density, influences synaptic plasticity and plays a key role in AD pathogenesis. |
format | Online Article Text |
id | pubmed-6121231 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61212312018-09-07 miRNA-34c Overexpression Causes Dendritic Loss and Memory Decline Kao, Yu-Chia Wang, I-Fang Tsai, Kuen-Jer Int J Mol Sci Article Microribonucleic acids (miRNAs) play a pivotal role in numerous aspects of the nervous system and are increasingly recognized as key regulators in neurodegenerative diseases. This study hypothesized that miR-34c, a miRNA expressed in mammalian hippocampi whose expression level can alter the hippocampal dendritic spine density, could induce memory impairment akin to that of patients with Alzheimer’s disease (AD) in mice. In this study, we showed that miR-34c overexpression in hippocampal neurons negatively regulated dendritic length and spine density. Hippocampal neurons transfected with miR-34c had shorter dendrites on average and fewer filopodia and spines than those not transfected with miR-34c (control mice). Because dendrites and synapses are key sites for signal transduction and fundamental structures for memory formation and storage, disrupted dendrites can contribute to AD. Therefore, we supposed that miR-34c, through its effects on dendritic spine density, influences synaptic plasticity and plays a key role in AD pathogenesis. MDPI 2018-08-08 /pmc/articles/PMC6121231/ /pubmed/30096777 http://dx.doi.org/10.3390/ijms19082323 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kao, Yu-Chia Wang, I-Fang Tsai, Kuen-Jer miRNA-34c Overexpression Causes Dendritic Loss and Memory Decline |
title | miRNA-34c Overexpression Causes Dendritic Loss and Memory Decline |
title_full | miRNA-34c Overexpression Causes Dendritic Loss and Memory Decline |
title_fullStr | miRNA-34c Overexpression Causes Dendritic Loss and Memory Decline |
title_full_unstemmed | miRNA-34c Overexpression Causes Dendritic Loss and Memory Decline |
title_short | miRNA-34c Overexpression Causes Dendritic Loss and Memory Decline |
title_sort | mirna-34c overexpression causes dendritic loss and memory decline |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6121231/ https://www.ncbi.nlm.nih.gov/pubmed/30096777 http://dx.doi.org/10.3390/ijms19082323 |
work_keys_str_mv | AT kaoyuchia mirna34coverexpressioncausesdendriticlossandmemorydecline AT wangifang mirna34coverexpressioncausesdendriticlossandmemorydecline AT tsaikuenjer mirna34coverexpressioncausesdendriticlossandmemorydecline |