Cargando…
β-adrenergic Receptor Stimulation Revealed a Novel Regulatory Pathway via Suppressing Histone Deacetylase 3 to Induce Uncoupling Protein 1 Expression in Mice Beige Adipocyte
Browning of adipose tissue has been prescribed as a potential way to treat obesity, marked by the upregulation of uncoupling protein 1 (Ucp1). Several reports have suggested that histone deacetylase (HDAC) might regulate Ucp1 by remodelling chromatin structure, although the mechanism remains unclear...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6121552/ https://www.ncbi.nlm.nih.gov/pubmed/30126161 http://dx.doi.org/10.3390/ijms19082436 |
_version_ | 1783352494966964224 |
---|---|
author | Yuliana, Ana Jheng, Huei-Fen Kawarasaki, Satoko Nomura, Wataru Takahashi, Haruya Ara, Takeshi Kawada, Teruo Goto, Tsuyoshi |
author_facet | Yuliana, Ana Jheng, Huei-Fen Kawarasaki, Satoko Nomura, Wataru Takahashi, Haruya Ara, Takeshi Kawada, Teruo Goto, Tsuyoshi |
author_sort | Yuliana, Ana |
collection | PubMed |
description | Browning of adipose tissue has been prescribed as a potential way to treat obesity, marked by the upregulation of uncoupling protein 1 (Ucp1). Several reports have suggested that histone deacetylase (HDAC) might regulate Ucp1 by remodelling chromatin structure, although the mechanism remains unclear. Herein, we investigate the effect of β-adrenergic receptor (β-AR) activation on the chromatin state of beige adipocyte. β-AR-stimulated Ucp1 expression via cold (in vivo) and isoproterenol (in vitro) resulted in acetylation of histone activation mark H3K27. H3K27 acetylation was also seen within Ucp1 promoter upon isoproterenol addition, favouring open chromatin for Ucp1 transcriptional activation. This result was found to be associated with the downregulation of class I HDAC mRNA, particularly Hdac3 and Hdac8. Further investigation showed that although HDAC8 activity decreased, Ucp1 expression was not altered when HDAC8 was activated or inhibited. In contrast, HDAC3 mRNA and protein levels were simultaneously downregulated upon isoproterenol addition, resulting in reduced recruitment of HDAC3 to the Ucp1 enhancer region, causing an increased H3K27 acetylation for Ucp1 upregulation. The importance of HDAC3 inhibition was confirmed through the enhanced Ucp1 expression when the cells were treated with HDAC3 inhibitor. This study highlights the novel mechanism of HDAC3-regulated Ucp1 expression during β-AR stimulation. |
format | Online Article Text |
id | pubmed-6121552 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-61215522018-09-07 β-adrenergic Receptor Stimulation Revealed a Novel Regulatory Pathway via Suppressing Histone Deacetylase 3 to Induce Uncoupling Protein 1 Expression in Mice Beige Adipocyte Yuliana, Ana Jheng, Huei-Fen Kawarasaki, Satoko Nomura, Wataru Takahashi, Haruya Ara, Takeshi Kawada, Teruo Goto, Tsuyoshi Int J Mol Sci Article Browning of adipose tissue has been prescribed as a potential way to treat obesity, marked by the upregulation of uncoupling protein 1 (Ucp1). Several reports have suggested that histone deacetylase (HDAC) might regulate Ucp1 by remodelling chromatin structure, although the mechanism remains unclear. Herein, we investigate the effect of β-adrenergic receptor (β-AR) activation on the chromatin state of beige adipocyte. β-AR-stimulated Ucp1 expression via cold (in vivo) and isoproterenol (in vitro) resulted in acetylation of histone activation mark H3K27. H3K27 acetylation was also seen within Ucp1 promoter upon isoproterenol addition, favouring open chromatin for Ucp1 transcriptional activation. This result was found to be associated with the downregulation of class I HDAC mRNA, particularly Hdac3 and Hdac8. Further investigation showed that although HDAC8 activity decreased, Ucp1 expression was not altered when HDAC8 was activated or inhibited. In contrast, HDAC3 mRNA and protein levels were simultaneously downregulated upon isoproterenol addition, resulting in reduced recruitment of HDAC3 to the Ucp1 enhancer region, causing an increased H3K27 acetylation for Ucp1 upregulation. The importance of HDAC3 inhibition was confirmed through the enhanced Ucp1 expression when the cells were treated with HDAC3 inhibitor. This study highlights the novel mechanism of HDAC3-regulated Ucp1 expression during β-AR stimulation. MDPI 2018-08-17 /pmc/articles/PMC6121552/ /pubmed/30126161 http://dx.doi.org/10.3390/ijms19082436 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yuliana, Ana Jheng, Huei-Fen Kawarasaki, Satoko Nomura, Wataru Takahashi, Haruya Ara, Takeshi Kawada, Teruo Goto, Tsuyoshi β-adrenergic Receptor Stimulation Revealed a Novel Regulatory Pathway via Suppressing Histone Deacetylase 3 to Induce Uncoupling Protein 1 Expression in Mice Beige Adipocyte |
title | β-adrenergic Receptor Stimulation Revealed a Novel Regulatory Pathway via Suppressing Histone Deacetylase 3 to Induce Uncoupling Protein 1 Expression in Mice Beige Adipocyte |
title_full | β-adrenergic Receptor Stimulation Revealed a Novel Regulatory Pathway via Suppressing Histone Deacetylase 3 to Induce Uncoupling Protein 1 Expression in Mice Beige Adipocyte |
title_fullStr | β-adrenergic Receptor Stimulation Revealed a Novel Regulatory Pathway via Suppressing Histone Deacetylase 3 to Induce Uncoupling Protein 1 Expression in Mice Beige Adipocyte |
title_full_unstemmed | β-adrenergic Receptor Stimulation Revealed a Novel Regulatory Pathway via Suppressing Histone Deacetylase 3 to Induce Uncoupling Protein 1 Expression in Mice Beige Adipocyte |
title_short | β-adrenergic Receptor Stimulation Revealed a Novel Regulatory Pathway via Suppressing Histone Deacetylase 3 to Induce Uncoupling Protein 1 Expression in Mice Beige Adipocyte |
title_sort | β-adrenergic receptor stimulation revealed a novel regulatory pathway via suppressing histone deacetylase 3 to induce uncoupling protein 1 expression in mice beige adipocyte |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6121552/ https://www.ncbi.nlm.nih.gov/pubmed/30126161 http://dx.doi.org/10.3390/ijms19082436 |
work_keys_str_mv | AT yulianaana badrenergicreceptorstimulationrevealedanovelregulatorypathwayviasuppressinghistonedeacetylase3toinduceuncouplingprotein1expressioninmicebeigeadipocyte AT jhenghueifen badrenergicreceptorstimulationrevealedanovelregulatorypathwayviasuppressinghistonedeacetylase3toinduceuncouplingprotein1expressioninmicebeigeadipocyte AT kawarasakisatoko badrenergicreceptorstimulationrevealedanovelregulatorypathwayviasuppressinghistonedeacetylase3toinduceuncouplingprotein1expressioninmicebeigeadipocyte AT nomurawataru badrenergicreceptorstimulationrevealedanovelregulatorypathwayviasuppressinghistonedeacetylase3toinduceuncouplingprotein1expressioninmicebeigeadipocyte AT takahashiharuya badrenergicreceptorstimulationrevealedanovelregulatorypathwayviasuppressinghistonedeacetylase3toinduceuncouplingprotein1expressioninmicebeigeadipocyte AT aratakeshi badrenergicreceptorstimulationrevealedanovelregulatorypathwayviasuppressinghistonedeacetylase3toinduceuncouplingprotein1expressioninmicebeigeadipocyte AT kawadateruo badrenergicreceptorstimulationrevealedanovelregulatorypathwayviasuppressinghistonedeacetylase3toinduceuncouplingprotein1expressioninmicebeigeadipocyte AT gototsuyoshi badrenergicreceptorstimulationrevealedanovelregulatorypathwayviasuppressinghistonedeacetylase3toinduceuncouplingprotein1expressioninmicebeigeadipocyte |