Cargando…
Machine Learning Based Toxicity Prediction: From Chemical Structural Description to Transcriptome Analysis
Toxicity prediction is very important to public health. Among its many applications, toxicity prediction is essential to reduce the cost and labor of a drug’s preclinical and clinical trials, because a lot of drug evaluations (cellular, animal, and clinical) can be spared due to the predicted toxici...
Autores principales: | Wu, Yunyi, Wang, Guanyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6121588/ https://www.ncbi.nlm.nih.gov/pubmed/30103448 http://dx.doi.org/10.3390/ijms19082358 |
Ejemplares similares
-
In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts
por: Yang, Hongbin, et al.
Publicado: (2018) -
Corrigendum: In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts
por: Yang, Hongbin, et al.
Publicado: (2018) -
Using Machine Learning to Parse Chemical Mixture Descriptions
por: Clark, Alex M., et al.
Publicado: (2021) -
Prediction of antimicrobial peptides toxicity based on their physico-chemical properties using machine learning techniques
por: Khabbaz, Hossein, et al.
Publicado: (2021) -
Using Machine Learning Methods and Structural Alerts for Prediction of Mitochondrial Toxicity
por: Hemmerich, Jennifer, et al.
Publicado: (2020)