Cargando…
Data-Driven Hazardous Gas Dispersion Modeling Using the Integration of Particle Filtering and Error Propagation Detection
The accurate prediction of hazardous gas dispersion process is essential to air quality monitoring and the emergency management of contaminant gas leakage incidents in a chemical cluster. Conventional Gaussian-based dispersion models can seldom give accurate predictions due to inaccurate input param...
Autores principales: | Zhu, Zhengqiu, Qiu, Sihang, Chen, Bin, Wang, Rongxiao, Qiu, Xiaogang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6121697/ https://www.ncbi.nlm.nih.gov/pubmed/30072651 http://dx.doi.org/10.3390/ijerph15081640 |
Ejemplares similares
-
Comparison of Machine Learning Models for Hazardous Gas Dispersion Prediction in Field Cases
por: Wang, Rongxiao, et al.
Publicado: (2018) -
A data-driven approach for optimal design of integrated air quality monitoring network in a chemical cluster
por: Zhu, Zhengqiu, et al.
Publicado: (2018) -
An Extended Chemical Plant Environmental Protection Game on Addressing Uncertainties of Human Adversaries
por: Zhu, Zhengqiu, et al.
Publicado: (2018) -
Playing Chemical Plant Environmental Protection Games with Historical Monitoring Data
por: Zhu, Zhengqiu, et al.
Publicado: (2017) -
Strategically Patrolling in a Chemical Cluster Addressing Gas Pollutants’ Releases through a Game-Theoretic Model
por: Chen, Bin, et al.
Publicado: (2019)