Cargando…

Impact of G-CSF on expressions of Egr-1 and VEGF in acute ischemic cerebral injury

The aim of the present study was to investigate the protective effect of granulocyte colony-stimulating factor (G-CSF) on acute ischemic cerebral injury, and its mechanism through the impact of G-CSF on early growth response-1 (Egr-1) and vascular endothelial growth factor (VEGF) expressions. Male S...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Dian-Gui, Shi, Yang-Hong, Cui, You-Qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122443/
https://www.ncbi.nlm.nih.gov/pubmed/30186473
http://dx.doi.org/10.3892/etm.2018.6486
Descripción
Sumario:The aim of the present study was to investigate the protective effect of granulocyte colony-stimulating factor (G-CSF) on acute ischemic cerebral injury, and its mechanism through the impact of G-CSF on early growth response-1 (Egr-1) and vascular endothelial growth factor (VEGF) expressions. Male Sprague-Dawley (SD) rats were divided them into three groups, i.e., the sham, model and G-CSF groups to measure the effect of G-CSF on the volume of cerebral infarction and level of lactate dehydrogenase (LDH) in rats. Hematoxylin and eosin (H&E) staining method was performed for histopathological examination. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis were used to detect the mRNA and protein expressions of Egr-1 and VEGF in different groups. Furthermore, Statistical Product and Service Solutions (SPSS) 17.0 software was applied to detect the differences in the expression of Egr-1 and VEGF between the two groups. Compared with the sham group, we found that the volume of cerebral infarction and LDH content in the model group were significantly elevated. By contrast, in the model group, those indicators in the G-CSF group were obviously decreased. H&E staining results also showed that G-CSF could decrease the necrotic area in cerebral infarction and the incidence of inflammation, and sustain the integrity of the molecular structure. Immunofluorescence staining results revealed that the protein expressions of Egr-1 and VEGF in the model group were all significantly decreased, while those in the G-CSF group were remarkably elevated. RT-PCR and western blot analysis revealed that the mRNA and protein expressions of Egr-1 and VEGF in the model group were decreased obviously, but those in the G-CSF group were elevated significantly, and the differences between the two groups showed statistical significance (P<0.05). G-CSF manifests a significant protective effect on the acute ischemic cerebral injury, which may be realized through its effect on the expressions of Egr-1 and VEGF.