Cargando…
Automated nasopharyngeal carcinoma segmentation in magnetic resonance images by combination of convolutional neural networks and graph cut
Accurate and reliable segmentation of nasopharyngeal carcinoma (NPC) in medical images is an import task for clinical applications, including radiotherapy. However, NPC features large variations in lesion size and shape, as well as inhomogeneous intensities within the tumor and similar intensity to...
Autores principales: | Ma, Zongqing, Wu, Xi, Song, Qi, Luo, Yong, Wang, Yan, Zhou, Jiliu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122541/ https://www.ncbi.nlm.nih.gov/pubmed/30210602 http://dx.doi.org/10.3892/etm.2018.6478 |
Ejemplares similares
-
Tumor Segmentation in Contrast-Enhanced Magnetic Resonance Imaging for Nasopharyngeal Carcinoma: Deep Learning with Convolutional Neural Network
por: Li, Qiaoliang, et al.
Publicado: (2018) -
Convolutional Neural Network Intelligent Segmentation Algorithm-Based Magnetic Resonance Imaging in Diagnosis of Nasopharyngeal Carcinoma Foci
por: Wang, Deli, et al.
Publicado: (2021) -
Fully-Automated Segmentation of Nasopharyngeal Carcinoma on Dual-Sequence MRI Using Convolutional Neural Networks
por: Ye, Yufeng, et al.
Publicado: (2020) -
Fully automated segmentation of clinical target volume in cervical cancer from magnetic resonance imaging with convolutional neural network
por: Zabihollahy, Fatemeh, et al.
Publicado: (2022) -
Convolutional neural network for automated mass segmentation in mammography
por: Abdelhafiz, Dina, et al.
Publicado: (2020)