Cargando…
Genome-wide identification of MADS-box family genes in moso bamboo (Phyllostachys edulis) and a functional analysis of PeMADS5 in flowering
BACKGROUND: MADS-box genes encode a large family of transcription factors that play significant roles in plant growth and development. Bamboo is an important non-timber forest product worldwide, but previous studies on the moso bamboo (Phyllostachys edulis) MADS-box gene family were not accurate nor...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122543/ https://www.ncbi.nlm.nih.gov/pubmed/30176795 http://dx.doi.org/10.1186/s12870-018-1394-2 |
Sumario: | BACKGROUND: MADS-box genes encode a large family of transcription factors that play significant roles in plant growth and development. Bamboo is an important non-timber forest product worldwide, but previous studies on the moso bamboo (Phyllostachys edulis) MADS-box gene family were not accurate nor sufficiently detailed. RESULTS: Here, a complete genome-wide identification and characterization of the MADS-box genes in moso bamboo was conducted. There was an unusual lack of type-I MADS-box genes in the bamboo genome database (http://202.127.18.221/bamboo/index.php), and some of the PeMADS sequences are fragmented and/or inaccurate. We performed several bioinformatics techniques to obtain more precise sequences using transcriptome assembly. In total, 42 MADS-box genes, including six new type-I MADS-box genes, were identified in bamboo, and their structures, phylogenetic relationships, predicted conserved motifs and promoter cis-elements were systematically investigated. An expression analysis of the bamboo MADS-box genes in floral organs and leaves revealed that several key members are involved in bamboo inflorescence development, like their orthologous genes in Oryza. The ectopic overexpression of one MADS-box gene, PeMADS5, in Arabidopsis triggered an earlier flowering time and the development of an aberrant flower phenotype, suggesting that PeMADS5 acts as a floral activator and is involved in bamboo flowering. CONCLUSION: We produced the most comprehensive information on MADS-box genes in moso bamboo. Additionally, a critical PeMADS gene (PeMADS5) responsible for the transition from vegetative to reproductive growth was identified and shown to be related to bamboo floral development. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12870-018-1394-2) contains supplementary material, which is available to authorized users. |
---|