Cargando…
Peroneal muscle activity during different types of walking
BACKGROUND: As the most common form of movement, walking happens not only on flat but also on uneven surfaces, where constant loss and regaining of balance occur. The main balancing function of the ankle joint is performed by tibial muscles. When changing inclination in a frontal plane, an essential...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122778/ https://www.ncbi.nlm.nih.gov/pubmed/30202446 http://dx.doi.org/10.1186/s13047-018-0291-0 |
Sumario: | BACKGROUND: As the most common form of movement, walking happens not only on flat but also on uneven surfaces, where constant loss and regaining of balance occur. The main balancing function of the ankle joint is performed by tibial muscles. When changing inclination in a frontal plane, an essential balancing function is performed by the peroneal muscles. One of the methods for improving the activity of peroneal muscles is walking with different foot placement. The objective of this study was to analyze the activity of the peroneal muscles when performing different types of walking. METHODS: Sixteen healthy participants took part in this study, walking on a flat surface (NORM), on a medial incline ramp with the plantar surface of the foot fully placed on the surface (FULL), and on a medial incline ramp with elevated lateral part of the foot (LAT). We monitored the changes of EMG signals in peroneus longus (PL), peroneus brevis (PB), tibialis anterior (TA), soleus (SOL), gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) muscles. We monitored kinematic parameters (gait speed, stride length, contact time, foot position). The parametric ANOVA test and a non-parametric Friedman test were used at an alpha level of 0.05. RESULTS: This study shows that the EMG activities of peroneal muscles increases when walking on the medial incline ramp. Statistically significant EMG differences were observed in the peroneal muscles, TA and GL muscles. We observe a very high percentage of normalized EMG value of the PL muscle in LAT walking. Walking on a medial incline ramp impacts the foot position, contact time, and stride length but not the gait speed. CONCLUSIONS: Walking on a medial incline ramp could be an effective exercise to improve the neuro-muscular function of the peroneal muscles and, therefore, might be a suitable exercise for people with weakened ankle evertors. |
---|