Cargando…
Exploratory analysis using machine learning to predict for chest wall pain in patients with stage I non‐small‐cell lung cancer treated with stereotactic body radiation therapy
BACKGROUND AND PURPOSE: Chest wall toxicity is observed after stereotactic body radiation therapy (SBRT) for peripherally located lung tumors. We utilize machine learning algorithms to identify toxicity predictors to develop dose–volume constraints. MATERIALS AND METHODS: Twenty‐five patient, tumor,...
Autores principales: | Chao, Hann‐Hsiang, Valdes, Gilmer, Luna, Jose M., Heskel, Marina, Berman, Abigail T., Solberg, Timothy D., Simone, Charles B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123157/ https://www.ncbi.nlm.nih.gov/pubmed/29992732 http://dx.doi.org/10.1002/acm2.12415 |
Ejemplares similares
-
Machine Learning in Radiation Oncology: Opportunities, Requirements, and Needs
por: Feng, Mary, et al.
Publicado: (2018) -
IMRT QA using machine learning: A multi‐institutional validation
por: Valdes, Gilmer, et al.
Publicado: (2017) -
Impact of Age on Patient-Reported Outcomes Following Stereotactic Body Radiation Therapy for Prostate Cancer
por: Pepin, Abigail, et al.
Publicado: (2021) -
Radiation Fibrosis After Stereotactic Body Radiation Therapy for Osseous Metastases: A Case Report
por: Kessler, Michael R, et al.
Publicado: (2022) -
The Association of Radiation Dose With Overall Survival for Patients Treated With Prostate Stereotactic Body Radiation Therapy
por: Waters, Michael R, et al.
Publicado: (2023)