Cargando…

The Fibrotic Substrate in Persistent Atrial Fibrillation Patients: Comparison Between Predictions From Computational Modeling and Measurements From Focal Impulse and Rotor Mapping

Focal impulse and rotor mapping (FIRM) involves intracardiac detection and catheter ablation of re-entrant drivers (RDs), some of which may contribute to arrhythmia perpetuation in persistent atrial fibrillation (PsAF). Patient-specific computational models derived from late gadolinium-enhanced magn...

Descripción completa

Detalles Bibliográficos
Autores principales: Boyle, Patrick M., Hakim, Joe B., Zahid, Sohail, Franceschi, William H., Murphy, Michael J., Prakosa, Adityo, Aronis, Konstantinos N., Zghaib, Tarek, Balouch, Muhammed, Ipek, Esra G., Chrispin, Jonathan, Berger, Ronald D., Ashikaga, Hiroshi, Marine, Joseph E., Calkins, Hugh, Nazarian, Saman, Spragg, David D., Trayanova, Natalia A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123380/
https://www.ncbi.nlm.nih.gov/pubmed/30210356
http://dx.doi.org/10.3389/fphys.2018.01151
_version_ 1783352827640283136
author Boyle, Patrick M.
Hakim, Joe B.
Zahid, Sohail
Franceschi, William H.
Murphy, Michael J.
Prakosa, Adityo
Aronis, Konstantinos N.
Zghaib, Tarek
Balouch, Muhammed
Ipek, Esra G.
Chrispin, Jonathan
Berger, Ronald D.
Ashikaga, Hiroshi
Marine, Joseph E.
Calkins, Hugh
Nazarian, Saman
Spragg, David D.
Trayanova, Natalia A.
author_facet Boyle, Patrick M.
Hakim, Joe B.
Zahid, Sohail
Franceschi, William H.
Murphy, Michael J.
Prakosa, Adityo
Aronis, Konstantinos N.
Zghaib, Tarek
Balouch, Muhammed
Ipek, Esra G.
Chrispin, Jonathan
Berger, Ronald D.
Ashikaga, Hiroshi
Marine, Joseph E.
Calkins, Hugh
Nazarian, Saman
Spragg, David D.
Trayanova, Natalia A.
author_sort Boyle, Patrick M.
collection PubMed
description Focal impulse and rotor mapping (FIRM) involves intracardiac detection and catheter ablation of re-entrant drivers (RDs), some of which may contribute to arrhythmia perpetuation in persistent atrial fibrillation (PsAF). Patient-specific computational models derived from late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) has the potential to non-invasively identify all areas of the fibrotic substrate where RDs could potentially be sustained, including locations where RDs may not manifest during mapped AF episodes. The objective of this study was to carry out multi-modal assessment of the arrhythmogenic propensity of the fibrotic substrate in PsAF patients by comparing locations of RD-harboring regions found in simulations and detected by FIRM (RD(sim) and RD(FIRM)) and analyze implications for ablation strategies predicated on targeting RDs. For 11 PsAF patients who underwent pre-procedure LGE-MRI and FIRM-guided ablation, we retrospectively simulated AF in individualized atrial models, with geometry and fibrosis distribution reconstructed from pre-ablation LGE-MRI scans, and identified RD(sim) sites. Regions harboring RD(sim) and RD(FIRM) were compared. RD(sim) were found in 38 atrial regions (median [inter-quartile range (IQR)] = 4 [3; 4] per model). RD(FIRM) were identified and subsequently ablated in 24 atrial regions (2 [1; 3] per patient), which was significantly fewer than the number of RD(sim)-harboring regions in corresponding models (p < 0.05). Computational modeling predicted RD(sim) in 20 of 24 (83%) atrial regions identified as RD(FIRM)-harboring during clinical mapping. In a large number of cases, we uncovered RD(sim)-harboring regions in which RD(FIRM) were never observed (18/22 regions that differed between the two modalities; 82%); we termed such cases “latent” RD(sim) sites. During follow-up (230 [180; 326] days), AF recurrence occurred in 7/11 (64%) individuals. Interestingly, latent RD(sim) sites were observed in all seven computational models corresponding to patients who experienced recurrent AF (2 [2; 2] per patient); in contrast, latent RD(sim) sites were only discovered in two of four patients who were free from AF during follow-up (0.5 [0; 1.5] per patient; p < 0.05 vs. patients with AF recurrence). We conclude that substrate-based ablation based on computational modeling could improve outcomes.
format Online
Article
Text
id pubmed-6123380
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-61233802018-09-12 The Fibrotic Substrate in Persistent Atrial Fibrillation Patients: Comparison Between Predictions From Computational Modeling and Measurements From Focal Impulse and Rotor Mapping Boyle, Patrick M. Hakim, Joe B. Zahid, Sohail Franceschi, William H. Murphy, Michael J. Prakosa, Adityo Aronis, Konstantinos N. Zghaib, Tarek Balouch, Muhammed Ipek, Esra G. Chrispin, Jonathan Berger, Ronald D. Ashikaga, Hiroshi Marine, Joseph E. Calkins, Hugh Nazarian, Saman Spragg, David D. Trayanova, Natalia A. Front Physiol Physiology Focal impulse and rotor mapping (FIRM) involves intracardiac detection and catheter ablation of re-entrant drivers (RDs), some of which may contribute to arrhythmia perpetuation in persistent atrial fibrillation (PsAF). Patient-specific computational models derived from late gadolinium-enhanced magnetic resonance imaging (LGE-MRI) has the potential to non-invasively identify all areas of the fibrotic substrate where RDs could potentially be sustained, including locations where RDs may not manifest during mapped AF episodes. The objective of this study was to carry out multi-modal assessment of the arrhythmogenic propensity of the fibrotic substrate in PsAF patients by comparing locations of RD-harboring regions found in simulations and detected by FIRM (RD(sim) and RD(FIRM)) and analyze implications for ablation strategies predicated on targeting RDs. For 11 PsAF patients who underwent pre-procedure LGE-MRI and FIRM-guided ablation, we retrospectively simulated AF in individualized atrial models, with geometry and fibrosis distribution reconstructed from pre-ablation LGE-MRI scans, and identified RD(sim) sites. Regions harboring RD(sim) and RD(FIRM) were compared. RD(sim) were found in 38 atrial regions (median [inter-quartile range (IQR)] = 4 [3; 4] per model). RD(FIRM) were identified and subsequently ablated in 24 atrial regions (2 [1; 3] per patient), which was significantly fewer than the number of RD(sim)-harboring regions in corresponding models (p < 0.05). Computational modeling predicted RD(sim) in 20 of 24 (83%) atrial regions identified as RD(FIRM)-harboring during clinical mapping. In a large number of cases, we uncovered RD(sim)-harboring regions in which RD(FIRM) were never observed (18/22 regions that differed between the two modalities; 82%); we termed such cases “latent” RD(sim) sites. During follow-up (230 [180; 326] days), AF recurrence occurred in 7/11 (64%) individuals. Interestingly, latent RD(sim) sites were observed in all seven computational models corresponding to patients who experienced recurrent AF (2 [2; 2] per patient); in contrast, latent RD(sim) sites were only discovered in two of four patients who were free from AF during follow-up (0.5 [0; 1.5] per patient; p < 0.05 vs. patients with AF recurrence). We conclude that substrate-based ablation based on computational modeling could improve outcomes. Frontiers Media S.A. 2018-08-29 /pmc/articles/PMC6123380/ /pubmed/30210356 http://dx.doi.org/10.3389/fphys.2018.01151 Text en Copyright © 2018 Boyle, Hakim, Zahid, Franceschi, Murphy, Prakosa, Aronis, Zghaib, Balouch, Ipek, Chrispin, Berger, Ashikaga, Marine, Calkins, Nazarian, Spragg and Trayanova. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Physiology
Boyle, Patrick M.
Hakim, Joe B.
Zahid, Sohail
Franceschi, William H.
Murphy, Michael J.
Prakosa, Adityo
Aronis, Konstantinos N.
Zghaib, Tarek
Balouch, Muhammed
Ipek, Esra G.
Chrispin, Jonathan
Berger, Ronald D.
Ashikaga, Hiroshi
Marine, Joseph E.
Calkins, Hugh
Nazarian, Saman
Spragg, David D.
Trayanova, Natalia A.
The Fibrotic Substrate in Persistent Atrial Fibrillation Patients: Comparison Between Predictions From Computational Modeling and Measurements From Focal Impulse and Rotor Mapping
title The Fibrotic Substrate in Persistent Atrial Fibrillation Patients: Comparison Between Predictions From Computational Modeling and Measurements From Focal Impulse and Rotor Mapping
title_full The Fibrotic Substrate in Persistent Atrial Fibrillation Patients: Comparison Between Predictions From Computational Modeling and Measurements From Focal Impulse and Rotor Mapping
title_fullStr The Fibrotic Substrate in Persistent Atrial Fibrillation Patients: Comparison Between Predictions From Computational Modeling and Measurements From Focal Impulse and Rotor Mapping
title_full_unstemmed The Fibrotic Substrate in Persistent Atrial Fibrillation Patients: Comparison Between Predictions From Computational Modeling and Measurements From Focal Impulse and Rotor Mapping
title_short The Fibrotic Substrate in Persistent Atrial Fibrillation Patients: Comparison Between Predictions From Computational Modeling and Measurements From Focal Impulse and Rotor Mapping
title_sort fibrotic substrate in persistent atrial fibrillation patients: comparison between predictions from computational modeling and measurements from focal impulse and rotor mapping
topic Physiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123380/
https://www.ncbi.nlm.nih.gov/pubmed/30210356
http://dx.doi.org/10.3389/fphys.2018.01151
work_keys_str_mv AT boylepatrickm thefibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT hakimjoeb thefibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT zahidsohail thefibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT franceschiwilliamh thefibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT murphymichaelj thefibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT prakosaadityo thefibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT aroniskonstantinosn thefibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT zghaibtarek thefibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT balouchmuhammed thefibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT ipekesrag thefibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT chrispinjonathan thefibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT bergerronaldd thefibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT ashikagahiroshi thefibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT marinejosephe thefibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT calkinshugh thefibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT nazariansaman thefibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT spraggdavidd thefibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT trayanovanataliaa thefibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT boylepatrickm fibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT hakimjoeb fibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT zahidsohail fibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT franceschiwilliamh fibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT murphymichaelj fibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT prakosaadityo fibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT aroniskonstantinosn fibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT zghaibtarek fibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT balouchmuhammed fibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT ipekesrag fibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT chrispinjonathan fibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT bergerronaldd fibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT ashikagahiroshi fibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT marinejosephe fibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT calkinshugh fibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT nazariansaman fibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT spraggdavidd fibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping
AT trayanovanataliaa fibroticsubstrateinpersistentatrialfibrillationpatientscomparisonbetweenpredictionsfromcomputationalmodelingandmeasurementsfromfocalimpulseandrotormapping