Cargando…

Tissue-engineered 3D melanoma model with blood and lymphatic capillaries for drug development

While being the rarest skin cancer, melanoma is also the deadliest. To further drug discovery and improve clinical translation, new human cell-based in vitro models are needed. Our work strives to mimic the melanoma microenvironment in vitro as an alternative to animal testing. We used the self-asse...

Descripción completa

Detalles Bibliográficos
Autores principales: Bourland, Jennifer, Fradette, Julie, Auger, François A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123405/
https://www.ncbi.nlm.nih.gov/pubmed/30181613
http://dx.doi.org/10.1038/s41598-018-31502-6
Descripción
Sumario:While being the rarest skin cancer, melanoma is also the deadliest. To further drug discovery and improve clinical translation, new human cell-based in vitro models are needed. Our work strives to mimic the melanoma microenvironment in vitro as an alternative to animal testing. We used the self-assembly method to produce a 3D human melanoma model exempt of exogenous biomaterial. This model is based on primary human skin cells and melanoma cell lines while including a key feature for tumor progression: blood and lymphatic capillaries. Major components of the tumor microenvironment such as capillaries, human extracellular matrix, a stratified epidermis (involucrin, filaggrin) and basement membrane (laminin 332) are recapitulated in vitro. We demonstrate the persistence of CD31(+) blood and podoplanin(+)/LYVE-1(+) lymphatic capillaries in the engineered tissue. Chronic treatment with vemurafenib was applied to the model and elicited a dose-dependent response on proliferation and apoptosis, making it a promising tool to test new compounds in a human-like environment.