Cargando…
Correlating nuclear morphometric patterns with estrogen receptor status in breast cancer pathologic specimens
In this pilot study, we introduce a machine learning framework to identify relationships between cancer tissue morphology and hormone receptor pathway activation in breast cancer pathology hematoxylin and eosin (H&E)-stained samples. As a proof-of-concept, we focus on predicting clinical estroge...
Autores principales: | Rawat, Rishi R., Ruderman, Daniel, Macklin, Paul, Rimm, David L., Agus, David B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123433/ https://www.ncbi.nlm.nih.gov/pubmed/30211313 http://dx.doi.org/10.1038/s41523-018-0084-4 |
Ejemplares similares
-
Deep learned tissue “fingerprints” classify breast cancers by ER/PR/Her2 status from H&E images
por: Rawat, Rishi R., et al.
Publicado: (2020) -
Vascular measurements correlate with estrogen receptor status
por: Lloyd, Mark C, et al.
Publicado: (2014) -
Intracellular kinetics of the androgen receptor shown by multimodal Image Correlation Spectroscopy (mICS)
por: Chiu, Chi-Li, et al.
Publicado: (2016) -
Association between low estrogen receptor positive breast cancer and staining performance
por: Caruana, Dennis, et al.
Publicado: (2020) -
Deep learning-enabled breast cancer hormonal receptor status determination from base-level H&E stains
por: Naik, Nikhil, et al.
Publicado: (2020)