Cargando…
Integration of gene interaction information into a reweighted random survival forest approach for accurate survival prediction and survival biomarker discovery
Accurately predicting patient risk and identifying survival biomarkers are two important tasks in survival analysis. For the emerging high-throughput gene expression data, random survival forest (RSF) is attracting more and more attention as it not only shows excellent performance on survival predic...
Autores principales: | Wang, Wei, Liu, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123437/ https://www.ncbi.nlm.nih.gov/pubmed/30181543 http://dx.doi.org/10.1038/s41598-018-31497-0 |
Ejemplares similares
-
Prediction of long-term survival after gastrectomy using random survival forests
por: Rahman, S A, et al.
Publicado: (2021) -
The AUGIS Survival Predictor: Prediction of Long-Term and Conditional Survival After Esophagectomy Using Random Survival Forests
por: Rahman, Saqib A., et al.
Publicado: (2023) -
Prediction the survival of patients with breast cancer using random survival forests for competing risks
por: NAJAFI-VOSOUGH, ROYA, et al.
Publicado: (2022) -
Reweighting technique for Monte Carlo integration
por: G K Fanourakis, et al.
Publicado: (1997) -
Prognostic risk factor of major salivary gland carcinomas and survival prediction model based on random survival forests
por: Chen, Yufan, et al.
Publicado: (2023)